[1] | Hauke P, Lewenstein M, and Eckardt A 2014 Phys. Rev. Lett. 113 045303 | Tomography of Band Insulators from Quench Dynamics
[2] | Miyake H, Siviloglou G A, Kennedy C J, Burton W C, and Ketterle W 2013 Phys. Rev. Lett. 111 185302 | Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices
[3] | Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, and Bloch I 2013 Phys. Rev. Lett. 111 185301 | Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices
[4] | Zheng W and Zhai H 2014 Phys. Rev. A 89 061603 | Floquet topological states in shaking optical lattices
[5] | Zhang S L and Zhou Q 2014 Phys. Rev. A 90 051601 | Shaping topological properties of the band structures in a shaken optical lattice
[6] | Mei F, You J B, Zhang D W, Yang X C, Fazio R, Zhu S L, and Kwek L C 2014 Phys. Rev. A 90 063638 | Topological insulator and particle pumping in a one-dimensional shaken optical lattice
[7] | Gómez-León A and Platero G 2013 Phys. Rev. Lett. 110 200403 | Floquet-Bloch Theory and Topology in Periodically Driven Lattices
[8] | Fläschner N, Rem B, Tarnowski M, Vogel D, Lühmann D S, Sengstock K, and Weitenberg C 2016 Science 352 1091 | Experimental reconstruction of the Berry curvature in a Floquet Bloch band
[9] | Verdeny A and Mintert F 2015 Phys. Rev. A 92 063615 | Tunable Chern insulator with optimally shaken lattices
[10] | Xiong T S, Gong J, and An J H 2016 Phys. Rev. B 93 184306 | Towards large-Chern-number topological phases by periodic quenching
[11] | Rechtsman M C, Zeuner J M, Plotnik Y, Lumer Y, Podolsky D, Dreisow F, Nolte S, Segev M, and Szameit A 2013 Nature 496 196 | Photonic Floquet topological insulators
[12] | Lindner N H, Refael G, and Galitski V 2011 Nat. Phys. 7 490 | Floquet topological insulator in semiconductor quantum wells
[13] | Aidelsburger M, Lohse M, Schweizer C, Atala M, Barreiro J T, Nascimbene S, Cooper N, Bloch I, and Goldman N 2015 Nat. Phys. 11 162 | Measuring the Chern number of Hofstadter bands with ultracold bosonic atoms
[14] | Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237 | Experimental realization of the topological Haldane model with ultracold fermions
[15] | Galitski V and Spielman I B 2013 Nature 494 49 | Spin–orbit coupling in quantum gases
[16] | Zhang W and Yi W 2013 Nat. Commun. 4 2711 | Topological Fulde–Ferrell–Larkin–Ovchinnikov states in spin–orbit-coupled Fermi gases
[17] | Wu Z, Zhang L, Sun W, Xu X T, Wang B Z, Ji S C, Deng Y, Chen S, Liu X J, and Pan J W 2016 Science 354 83 | Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates
[18] | Kinoshita T, Wenger T, and Weiss D S 2006 Nature 440 900 | A quantum Newton's cradle
[19] | Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U, and Bloch I 2015 Science 349 842 | Observation of many-body localization of interacting fermions in a quasirandom optical lattice
[20] | Baumann K, Guerlin C, Brennecke F, and Esslinger T 2010 Nature 464 1301 | Dicke quantum phase transition with a superfluid gas in an optical cavity
[21] | Deng S, Shi Z Y, Diao P, Yu Q, Zhai H, Qi R, and Wu H 2016 Science 353 371 | Observation of the Efimovian expansion in scale-invariant Fermi gases
[22] | Kaufman A M, Tai M E, Lukin A, Rispoli M, Schittko R, Preiss P M, and Greiner M 2016 Science 353 794 | Quantum thermalization through entanglement in an isolated many-body system
[23] | Russomanno A, Iemini F, Dalmonte M, and Fazio R 2017 Phys. Rev. B 95 214307 | Floquet time crystal in the Lipkin-Meshkov-Glick model
[24] | Moessner R and Sondhi S 2017 Nat. Phys. 13 424 | Equilibration and order in quantum Floquet matter
[25] | Zhang J, Hess P, Kyprianidis A et al. 2017 Nature 543 217 | Observation of a discrete time crystal
[26] | Else D V, Bauer B, and Nayak C 2016 Phys. Rev. Lett. 117 090402 | Floquet Time Crystals
[27] | Yao N Y, Potter A C, Potirniche I D, and Vishwanath A 2017 Phys. Rev. Lett. 118 030401 | Discrete Time Crystals: Rigidity, Criticality, and Realizations
[28] | Blanes S, Casas F, Oteo J A, and Ros J 2009 Phys. Rep. 470 151 | The Magnus expansion and some of its applications
[29] | Lefebvre R 1999 Int. J. Quantum Chem. 72 261 | High-frequency Floquet theory: Test of the applicability of the golden rule
[30] | Eckardt A and Anisimovas E 2015 New J. Phys. 17 093039 | High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective
[31] | Faisal F H M and Kamiński J Z 1997 Phys. Rev. A 56 748 | Floquet-Bloch theory of high-harmonic generation in periodic structures
[32] | Bukov M, D'Alessio L, and Polkovnikov A 2015 Adv. Phys. 64 139 | Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering
[33] | Itin A P and Katsnelson M I 2015 Phys. Rev. Lett. 115 075301 | Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings
[34] | Hemmerich A 2010 Phys. Rev. A 81 063626 | Effective time-independent description of optical lattices with periodic driving
[35] | Wells J, Simbotin I, and Gavrila M 1997 Phys. Rev. A 56 3961 | High-frequency Floquet-theory content of wave-packet dynamics
[36] | Casas F, Oteo J, and Ros J 2001 J. Phys. A 34 3379 | Floquet theory: exponential perturbative treatment
[37] | Mananga E S 2017 J. Phys. Chem. A 121 6063 | Equivalence of the Floquet–Magnus and Fer Expansions to Investigate the Dynamics of a Spin System in the Three-Level System
[38] | Rahav S, Gilary I, and Fishman S 2003 Phys. Rev. A 68 013820 | Effective Hamiltonians for periodically driven systems
[39] | Kundu A, Fertig H, and Seradjeh B 2014 Phys. Rev. Lett. 113 236803 | Effective Theory of Floquet Topological Transitions
[40] | Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027 | Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields
[41] | Ramesh R and Krishnan M S 2001 J. Chem. Phys. 114 5967 | Effective Hamiltonians in Floquet theory of magic angle spinning using van Vleck transformation
[42] | Zhao X G 1994 Phys. Rev. B 49 16753 | Quasienergy and Floquet states in a time-periodic driven two-level system
[43] | Angelo R M and Wreszinski W F 2005 Phys. Rev. A 72 034105 | Two-level quantum dynamics, integrability, and unitary NOT gates
[44] | Barata J A C A and Cortez D A 2002 Phys. Lett. A 301 350 | Time evolution of two-level systems driven by periodic fields
[45] | Gentile G 2003 Commun. Math. Phys. 242 221 | Quasi-Periodic Solutions for Two-Level Systems
[46] | Blekher P, Jauslin H, and Lebowitz J 1992 J. Stat. Phys. 68 271 | Floquet spectrum for two-level systems in quasiperiodic time-dependent fields
[47] | Scott W R 2012 Group Theory (Massachusetts: Courier) |
[48] | Zel'Dovich Y B 1967 Sov. Phys.-JETP 24 1006 |
[49] | Ritus V 1967 Sov. Phys.-JETP 24 1041 |
[50] | Shirley J H 1965 Phys. Rev. 138 B979 | Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time
[51] | Moskalets M and Büttiker M 2002 Phys. Rev. B 66 205320 | Floquet scattering theory of quantum pumps
[52] | Gammaitoni L, Hänggi P, Jung P, and Marchesoni F 1998 Rev. Mod. Phys. 70 223 | Stochastic resonance
[53] | Barone S R, Narcowich M A, and Narcowich F J 1977 Phys. Rev. A 15 1109 | Floquet theory and applications
[54] | Simmendinger C, Wunderlin A, and Pelster A 1999 Phys. Rev. E 59 5344 | Analytical approach for the Floquet theory of delay differential equations
[55] | Dai C, Shi Z, and Yi X 2016 Phys. Rev. A 93 032121 | Floquet theorem with open systems and its applications
[56] | Traversa F L, Di Ventra M, and Bonani F 2013 Phys. Rev. Lett. 110 170602 | Generalized Floquet Theory: Application to Dynamical Systems with Memory and Bloch’s Theorem for Nonlocal Potentials
[57] | Sambe H 1973 Phys. Rev. A 7 2203 | Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field
[58] | Lazarides A, Das A, and Moessner R 2014 Phys. Rev. Lett. 112 150401 | Periodic Thermodynamics of Isolated Quantum Systems
[59] | Tong Q J, An J H, Gong J, Luo H G, and Oh C 2013 Phys. Rev. B 87 201109 | Generating many Majorana modes via periodic driving: A superconductor model