[1] | Gross D J and Wilczek F 1973 Phys. Rev. Lett. 30 1343 | Ultraviolet Behavior of Non-Abelian Gauge Theories
[2] | Politzer H D 1973 Phys. Rev. Lett. 30 1346 | Reliable Perturbative Results for Strong Interactions?
[3] | Prosperi G M, Raciti M, and Simolo C 2007 Prog. Part. Nucl. Phys. 58 387 | On the running coupling constant in QCD
[4] | Deur A, Brodsky S J, and de Teramond G F 2016 Prog. Part. Nucl. Phys. 90 1 | The QCD running coupling
[5] | Brodsky S J, de Teramond G F, Dosch H G, and Erlich J 2015 Phys. Rep. 584 1 | Light-front holographic QCD and emerging confinement
[6] | Grunberg G 1980 Phys. Lett. B 95 70 | Renormalization group improved perturbative QCD
[7] | Grunberg G 1984 Phys. Rev. D 29 2315 | Renormalization-scheme-invariant QCD and QED: The method of effective charges
[8] | Bjorken J D 1966 Phys. Rev. 148 1467 | Applications of the Chiral Algebra of Current Densities
[9] | Bjorken J D 1970 Phys. Rev. D 1 1376 | Inelastic Scattering of Polarized Leptons from Polarized Nucleons
[10] | Deur A et al. 2004 Phys. Rev. Lett. 93 212001 | Experimental Determination of the Evolution of the Bjorken Integral at Low
[11] | Deur A, Burkert V, Chen J P, and Korsch W 2007 Phys. Lett. B 650 244 | Experimental determination of the effective strong coupling constant
[12] | Deur A et al. 2008 Phys. Rev. D 78 032001 | Experimental study of isovector spin sum rules
[13] | Deur A et al. 2014 Phys. Rev. D 90 012009 | High precision determination of the evolution of the Bjorken sum
[14] | Yu Q, Wu X G, Zhou H, and Huang X D 2021 Eur. Phys. J. C 81 690 | A novel determination of non-perturbative contributions to Bjorken sum rule
[15] | Baikov P A, Chetyrkin K G, and Kuhn J H 2010 Phys. Rev. Lett. 104 132004 | Adler Function, Bjorken Sum Rule, and the Crewther Relation to Order in a General Gauge Theory
[16] | Baikov P A, Chetyrkin K G, Kuhn J H, and Rittinger J 2012 J. High Energy Phys. 2012(07) 017 | Vector correlator in massless QCD at order $ \mathcal{O}\left( {\alpha_s^4} \right) $ and the QED β-function at five loop
[17] | Brodsky S J, de Teramond G F, and Deur A 2010 Phys. Rev. D 81 096010 | Nonperturbative QCD coupling and its function from light-front holography
[18] | Zhang Q L, Wu X G, Zheng X C, Wang S Q, Fu H B, and Fang Z Y 2014 Chin. Phys. Lett. 31 051202 | Hadronic Decays of the Spin-Singlet Heavy Quarkomium under the Principle of Maximum Conformality
[19] | Deur A, Brodsky S J, and de Teramond G F 2015 Phys. Lett. B 750 528 | Connecting the hadron mass scale to the fundamental mass scale of quantum chromodynamics
[20] | Deur A, Brodsky S J, and de Teramond G F 2016 Phys. Lett. B 757 275 | On the interface between perturbative and nonperturbative QCD
[21] | Deur A, Shen J M, Wu X G, Brodsky S J, and de Teramond G F 2017 Phys. Lett. B 773 98 | Implications of the principle of maximum conformality for the QCD strong coupling
[22] | Brodsky S J and Wu X G 2012 Phys. Rev. D 85 034038 | Scale setting using the extended renormalization group and the principle of maximum conformality: The QCD coupling constant at four loops
[23] | Brodsky S J and Wu X G 2012 Phys. Rev. Lett. 109 042002 | Eliminating the Renormalization Scale Ambiguity for Top-Pair Production Using the Principle of Maximum Conformality
[24] | Brodsky S J and Di Giustino L 2012 Phys. Rev. D 86 085026 | Setting the renormalization scale in QCD: The principle of maximum conformality
[25] | Mojaza M, Brodsky S J, and Wu X G 2013 Phys. Rev. Lett. 110 192001 | Systematic All-Orders Method to Eliminate Renormalization-Scale and Scheme Ambiguities in Perturbative QCD
[26] | Brodsky S J, Mojaza M, and Wu X G 2014 Phys. Rev. D 89 014027 | Systematic scale-setting to all orders: The principle of maximum conformality and commensurate scale relations
[27] | Wu X G et al. 2015 Rep. Prog. Phys. 78 126201 | Renormalization group invariance and optimal QCD renormalization scale-setting: a key issues review
[28] | Wu X G, Shen J M, Du B L, Huang X D, Wang S Q, and Brodsky S J 2019 Prog. Part. Nucl. Phys. 108 103706 | The QCD renormalization group equation and the elimination of fixed-order scheme-and-scale ambiguities using the principle of maximum conformality
[29] | Petermann A 1953 Helv. Phys. Acta 26 499 |
[30] | Gell-Mann M and Low F E 1954 Phys. Rev. 95 1300 | Quantum Electrodynamics at Small Distances
[31] | Callan C G and J 1970 Phys. Rev. D 2 1541 | Broken Scale Invariance in Scalar Field Theory
[32] | Symanzik K 1970 Commun. Math. Phys. 18 227 | Small distance behaviour in field theory and power counting
[33] | Peterman A 1979 Phys. Rep. 53 157 | Renormalization group and the deep structure of the proton
[34] | Brodsky S J, Lepage G P, and Mackenzie P B 1983 Phys. Rev. D 28 228 | On the elimination of scale ambiguities in perturbative quantum chromodynamics
[35] | Shen J M, Wu X G, Du B L, and Brodsky S J 2017 Phys. Rev. D 95 094006 | Novel all-orders single-scale approach to QCD renormalization scale-setting
[36] | Wu X G, Shen J M, Du B L, and Brodsky S J 2018 Phys. Rev. D 97 094030 | Novel demonstration of the renormalization group invariance of the fixed-order predictions using the principle of maximum conformality and the -scheme coupling
[37] | Huang X D et al. 2021 arXiv:2109.12356 [hep-ph] | Detailed Comparison of Renormalization Scale-Setting Procedures based on the Principle of Maximum Conformality
[38] | Brodsky S J and Lu H J 1995 Phys. Rev. D 51 3652 | Commensurate scale relations in quantum chromodynamics
[39] | Appelquist T, Dine M, and Muzinich I J 1977 Phys. Lett. B 69 231 | The static potential in quantum chromodynamics
[40] | Fischler W 1977 Nucl. Phys. B 129 157 | Quark-antiquark potential in QCD
[41] | Peter M 1997 Phys. Rev. Lett. 78 602 | Static Quark-Antiquark Potential in QCD to Three Loops
[42] | Schröder Y 1999 Phys. Lett. B 447 321 | The static potential in QCD to two loops
[43] | Brodsky S J, Hoang A H, Kuhn J H, and Teubner T 1995 Phys. Lett. B 359 355 | Angular distributions of massive quarks and leptons close to threshold
[44] | Brodsky S J, Ji C R, Pang A, and Robertson D G 1998 Phys. Rev. D 57 245 | Optimal renormalization scale and scheme for exclusive processes
[45] | Brodsky S J, Gill M S, Melles M, and Rathsman J 1998 Phys. Rev. D 58 116006 | Analytic extension of the modified minimal subtraction renormalization scheme
[46] | Bi H Y, Wu X G, Ma Y, Ma H H, Brodsky S J, and Mojaza M 2015 Phys. Lett. B 748 13 | Degeneracy relations in QCD and the equivalence of two systematic all-orders methods for setting the renormalization scale
[47] | Chetyrkin K G 2005 Nucl. Phys. B 710 499 | Four-loop renormalization of QCD: full set of renormalization constants and anomalous dimensions
[48] | Czakon M 2005 Nucl. Phys. B 710 485 | The four-loop QCD β-function and anomalous dimensions
[49] | Baikov P A, Chetyrkin K G, and Kühn J H 2017 Phys. Rev. Lett. 118 082002 | Five-Loop Running of the QCD Coupling Constant
[50] | Zyla P A et al. (Particle Data Group) 2020 Prog. Theor. Exp. Phys. 2020 083C01 | Review of Particle Physics
[51] | Zheng X C, Wu X G, Wang S Q, Shen J M, and Zhang Q L 2013 J. High Energy Phys. 2013(10) 117 | Reanalysis of the BFKL Pomeron at the next-to-leading logarithmic accuracy
[52] | Huang X D, Wu X G, Yu Q, Zheng X C, and Zeng J 2021 Nucl. Phys. B 969 115466 | The Gross-Llewellyn Smith sum rule up to -order QCD corrections
[53] | Basdevant J L 1972 Fortschr. Phys. 20 283 | The Padé Approximation and its Physical Applications
[54] | Du B L, Wu X G, Shen J M, and Brodsky S J 2019 Eur. Phys. J. C 79 182 | Extending the predictive power of perturbative QCD
[55] | Ackerstaff K et al. (OPAL Collaboration) 1999 Eur. Phys. J. C 7 571 | Measurement of the strong coupling constant $\alpha_{\rm s}$ and the vector and axial-vector spectral functions in hadronic tau decays
[56] | Brodsky S J, Menke S, Merino C, and Rathsman J 2003 Phys. Rev. D 67 055008 | Behavior of the effective QCD coupling at low scales
[57] | Gross D J and Smith C H L 1969 Nucl. Phys. B 14 337 | High-energy neutrino-nucleon scattering, current algebra and partons
[58] | Kim J H et al. 1998 Phys. Rev. Lett. 81 3595 | Measurement of from the Gross–Llewellyn Smith Sum Rule
[59] | Ackerstaff K et al. (HERMES Collaboration) 1997 Phys. Lett. B 404 383 | Measurement of the neutron spin structure function g with a polarized 3He internal target
| Ackerstaff K et al. (HERMES Collaboration) 1998 Phys. Lett. B 444 531 | Determination of the deep inelastic contribution to the generalised Gerasimov-Drell-Hearn integral for the proton and neutron
| Airapetian A et al. (HERMES Collaboration) 1998 Phys. Lett. B 442 484 | Measurement of the proton spin structure function g1p with a pure hydrogen target
| Airapetian A et al. (HERMES Collaboration) 2003 Phys. Rev. Lett. 90 092002 | Evidence for Quark-Hadron Duality in the Proton Spin Asymmetry
| Airapetian A et al. (HERMES Collaboration) 2007 Phys. Rev. D 75 012007 | Precise determination of the spin structure function of the proton, deuteron, and neutron
[60] | Alexakhin V Y et al. (COMPASS Collaboration) 2007 Phys. Lett. B 647 8 | The deuteron spin-dependent structure function g1d and its first moment
| Alekseev M G et al. (COMPASS Collaboration) 2010 Phys. Lett. B 690 466 | The spin-dependent structure function of the proton g1p and a test of the Bjorken sum rule
| Adolph C et al. (COMPASS Collaboration) 2016 Phys. Lett. B 753 18 | The spin structure function of the proton and a test of the Bjorken sum rule
[61] | Anthony P L et al. (E142 Collaboration) 1993 Phys. Rev. Lett. 71 959 | Determination of the neutron spin structure function
| Anthony P L et al. (E142 Collaboration) 1996 Phys. Rev. D 54 6620 | Deep inelastic scattering of polarized electrons by polarized and the study of the neutron spin structure
| Abe K et al. (E143 Collaboration) 1995 Phys. Rev. Lett. 74 346 | Precision Measurement of the Proton Spin Structure Function
| Abe K et al. (E143 Collaboration) 1995 Phys. Rev. Lett. 75 25 | Precision Measurement of the Deuteron Spin Structure Function
| Abe K et al. (E143 Collaboration) 1996 Phys. Rev. Lett. 76 587 | Measurements of the Proton and Deuteron Spin Structure Function and Asymmetry
| Abe K et al. (E143 Collaboration) 1995 Phys. Lett. B 364 61 | Measurements of the Q2-dependence of the proton and deuteron spin structure functions g1 and g1
| Abe K et al. (E143 Collaboration) 1998 Phys. Rev. D 58 112003 | Measurements of the proton and deuteron spin structure functions and
[62] | Abe K et al. (E154 Collaboration) 1997 Phys. Rev. Lett. 79 26 | Precision Determination of the Neutron Spin Structure Function
| Abe K et al. (E154 Collaboration) 1997 Phys. Lett. B 404 377 | Measurement of the neutron spin structure function g and asymmetry A
| Abe K et al. (E154 Collaboration) 1997 Phys. Lett. B 405 180 | Next-to-leading order QCD analysis of polarized deep inelastic scattering data
[63] | Anthony P L et al. (E155 Collaboration) 1999 Phys. Lett. B 458 529 | Measurement of the proton and deuteron spin structure functions g2 and asymmetry A2
| Anthony P L et al. (E155 Collaboration) 1999 Phys. Lett. B 463 339 | Measurement of the deuteron spin structure function g1d(x) for 1 (GeV/c)2
| Anthony P L et al. (E155 Collaboration) 2000 Phys. Lett. B 493 19 | Measurements of the Q2-dependence of the proton and neutron spin structure functions g1p and g1n
| Anthony P L et al. (E155 Collaboration) 2003 Phys. Lett. B 553 18 | Precision measurement of the proton and deuteron spin structure functions g2 and asymmetries A2
[64] | Adeva B et al. (Spin Muon Collaboration) 1998 Phys. Rev. D 58 112001 | Spin asymmetries and structure functions of the proton and the deuteron from polarized high energy muon scattering