[1] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 | Doping a Mott insulator: Physics of high-temperature superconductivity
[2] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 | Quantum spin liquid states
[3] | Qiao Z, Ren W, Chen H, Bellaiche L, Zhang Z, MacDonald A H, and Niu Q 2014 Phys. Rev. Lett. 112 116404 | Quantum Anomalous Hall Effect in Graphene Proximity Coupled to an Antiferromagnetic Insulator
[4] | Liu C, Wang Y, Li H, Wu Y, Li Y, Li J, He K, Xu Y, Zhang J, and Wang Y 2020 Nat. Mater. 19 522 | Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator
[5] | Park B G, Wunderlich J, Martı́ X, Holỳ V, Kurosaki Y, Yamada M, Yamamoto H, Nishide A, Hayakawa J, Takahashi H, Shick A B, and Jungwirth T 2011 Nat. Mater. 10 347 | A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction
[6] | Qiu Z, Hou D, Barker J, Yamamoto K, Gomonay O, and Saitoh E 2018 Nat. Mater. 17 577 | Spin colossal magnetoresistance in an antiferromagnetic insulator
[7] | Wadley P, Howells B, Železnỳ J, Andrews C, Hills V, Campion R P, Novák V, Olejnı́k K, Maccherozzi F, SS D, Martin S Y, Wanger T, Wunderlich J, Freimuth F, Mokrosov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, and Jungwirth T 2016 Science 351 587 | Electrical switching of an antiferromagnet
[8] | Jungwirth T, Marti X, Wadley P, and Wunderlich J 2016 Nat. Nanotechnol. 11 231 | Antiferromagnetic spintronics
[9] | Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, and Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005 | Antiferromagnetic spintronics
[10] | Li X, Hongyu Y, Feng L, Feng J S, Whangbo M H, and Xiang H 2021 Molecules 26 803 | Spin Hamiltonians in Magnets: Theories and Computations
[11] | Loh E Y, Gubernatis J E, Scalettar R T, White S R, Scalapino D J, and Sugar R L 1990 Phys. Rev. B 41 9301 | Sign problem in the numerical simulation of many-electron systems
[12] | Didier P, Matthieu M, and Fabien A 2021 SciPost Phys. 10 19 | Finite-temperature symmetric tensor network for spin-1/2 Heisenberg antiferromagnets on the square lattice
[13] | Li W, Ran S J, Gong S S, Zhao Y, Xi B, Ye F, and Su G 2011 Phys. Rev. Lett. 106 127202 | Linearized Tensor Renormalization Group Algorithm for the Calculation of Thermodynamic Properties of Quantum Lattice Models
[14] | Czarnik P, Cincio L, and Dziarmaga J 2012 Phys. Rev. B 86 245101 | Projected entangled pair states at finite temperature: Imaginary time evolution with ancillas
[15] | Rao W J 2020 Chin. Phys. Lett. 37 080501 | Machine Learning for Many-Body Localization Transition
[16] | Cheng Z and Yu Z 2021 Chin. Phys. Lett. 38 070302 | Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems
[17] | Zhang R, Wei B, Zhang D, Zhu J J, and Chang K 2019 Phys. Rev. B 99 094427 | Few-shot machine learning in the three-dimensional Ising model
[18] | Lu H, Li C, Chen B B, Li W, Qi Y, and Meng Z Y 2022 Chin. Phys. Lett. 39 050701 | Network-Initialized Monte Carlo Based on Generative Neural Networks
[19] | Ouyang Y, Zhang Z, Yu C, He J, Yan G, and Chen J 2020 Chin. Phys. Lett. 37 126301 | Accuracy of Machine Learning Potential for Predictions of Multiple-Target Physical Properties
[20] | Schmidt J, Marques M R G, Botti S, and Marques M A L M 2019 npj Comput. Mater. 5 83 | Recent advances and applications of machine learning in solid-state materials science
[21] | Noh J, Gu G H, Kim S, and Jung Y 2020 Chem. Sci. 11 4871 | Machine-enabled inverse design of inorganic solid materials: promises and challenges
[22] | Xie T and Grossman J C 2018 Phys. Rev. Lett. 120 145301 | Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties
[23] | Chen C, Ye W, Zuo Y, Zheng C, and Ong S P 2019 Chem. Mater. 31 3564 | Graph Networks as a Universal Machine Learning Framework for Molecules and Crystals
[24] | Schütt K T, Sauceda H E, Kindermans P J, Tkatchenko A, and Müller K R 2018 J. Chem. Phys. 148 241722 | SchNet – A deep learning architecture for molecules and materials
[25] | Karamad M, Magar R, Shi Y, Siahrostami S, Gates I D, and Farimani A B 2020 Phys. Rev. Mater. 4 093801 | Orbital graph convolutional neural network for material property prediction
[26] | Park C W and Wolverton C 2020 Phys. Rev. Mater. 4 063801 | Developing an improved crystal graph convolutional neural network framework for accelerated materials discovery
[27] | Nelson J and Sanvito S 2019 Phys. Rev. Mater. 3 104405 | Predicting the Curie temperature of ferromagnets using machine learning
[28] | Long T, M F N, Zhang Y, Gutfleisch O, and Zhang H 2021 Mater. Res. Lett. 9 169 | An accelerating approach of designing ferromagnetic materials via machine learning modeling of magnetic ground state and Curie temperature
[29] | Nguyen D N, Pham T L, Nguyen V C, Nguyen A T, Kino H, Miyake A, and Dam H C 2019 J. Phys.: Conf. Ser. 1290 012009 | A regression-based model evaluation of the Curie temperature of transition-metal rare-earth compounds
[30] | Lu K, Chang D, Lu T, Ji X, Li M, and Lu W 2021 J. Supercond. Novel Magn. 34 1961 | Machine Learning Model for High-Throughput Screening of Perovskite Manganites with the Highest Néel Temperature
[31] | Court C and Cole J 2020 npj Comput. Mater. 6 18 | Magnetic and superconducting phase diagrams and transition temperatures predicted using text mining and machine learning
[32] | Dunn A, Wang Q, Ganose A, Dopp D, and Jain A 2020 npj Comput. Mater. 6 138 | Benchmarking materials property prediction methods: the Matbench test set and Automatminer reference algorithm
[33] | Ghiringhelli L M, Vybiral J, Levchenko S V, Draxl C, and Scheffler M 2015 Phys. Rev. Lett. 114 105503 | Big Data of Materials Science: Critical Role of the Descriptor
[34] | Devlin J, Chang M W, Lee K, and Toutanova K 2018 arXiv:1810.04805 [cs.CL] | BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
[35] | He K, Fan H, Wu Y, Xie S, and Girshick R 2019 arXiv:1911.05722 [cs.CV] | Momentum Contrast for Unsupervised Visual Representation Learning
[36] | Hu W, Liu B, Gomes J, Zitnik M, Liang P, Pande V, and Leskovec J 2019 arXiv:1905.12265 [cs.LG] | Strategies for Pre-training Graph Neural Networks
[37] | Gilmer J, Schoenholz S S, Riley P F, Vinyals O, and Dahl G E 2017 arXiv:1704.01212 [cs.LG] | Neural Message Passing for Quantum Chemistry
[38] | Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, and Persson K A 2013 APL Mater. 1 011002 | Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
[39] | Li Q, Han Z, and Wu X M 2018 arXiv:1801.07606 [cs.LG] | Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning
[40] | van der Maaten L and Hinton G 2008 J. Mach. Learn. Res. 9 2579 |
[41] | Gallego S V, Perez-Mato J M, Elcoro L, Tasci E S, Hanson R M, Momma K, Aroyo M I, and Madariaga G 2016 J. Appl. Crystallogr. 49 1750 | MAGNDATA : towards a database of magnetic structures. I. The commensurate case
[42] | Gallego S V, Perez-Mato J M, Elcoro L, Tasci E S, Hanson R M, Momma K, Aroyo M I, and Madariaga G 2016 J. Appl. Crystallogr. 49 1941 | MAGNDATA : towards a database of magnetic structures. II. The incommensurate case
[43] | Faber F, Lindmaa A, von Lilienfeld O A, and Armiento R 2015 Int. J. Quantum Chem. 115 1094 | Crystal structure representations for machine learning models of formation energies
[44] | Pham T L, Kino H, Terakura K, Miyake T T I, Tsuda K, and Dam H C 2017 Sci. Technol. Adv. Mater. 18 756 | Machine learning reveals orbital interaction in materials
[45] | Jenkins S, Chantrell R W, and Evans R F L 2021 Phys. Rev. B 103 014424 | Exchange bias in multigranular noncollinear thin films
[46] | Kuo C Y, Drees Y, Fernández-Díaz M T, Zhao L, Vasylechko L, Sheptyakov D, Bell A M T, Pi T W, Lin H J, Wu M K, Pellegrin E, Valvidares S M, Li Z W, Adler P, Todorova A, Küchler R, Steppke A, Tjeng L H, Hu Z, and Komarek A C 2014 Phys. Rev. Lett. 113 217203 | Magnetic Structure and Absence of Ferroelectricity in
[47] | Hiley C I, Scanlon D O, Sokol A A, Woodley S M, Ganose A M, Sangiao S, De Teresa J M, Manuel P, Khalyavin D D, Walker M, Lees M R, and Walton R I 2015 Phys. Rev. B 92 104413 | Antiferromagnetism at in the layered hexagonal ruthenate
[48] | Tomeno I, Fuke H N, Iwasaki H, Sahashi M, and Tsunoda Y 1999 J. Appl. Phys. 86 3853 | Magnetic neutron scattering study of ordered Mn3Ir
[49] | Collomb A, Wolfers P, and Obradors X 1986 J. Magn. Magn. Mater. 62 57 | Neutron diffraction studies of some hexagonal ferrites: BaFe12O19, BaMg2W and BaCo2W
[50] | Bertaut E F, Chappert J, Mareschal J, Rebouillat J P, and Sivardière J 1967 Solid State Commun. 5 293 | Structures magnetiques de TbFeO3
[51] | Bronstein M M, Bruna J, Cohen T, and Veličković P 2021 arXiv:2104.13478 [cs.LG] | Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges
[52] | Xie T, Bapst V, Gaunt A L, Obika A, Back T, Demis H, Kohli P, and Kirkpatrick J 2021 arXiv:2103.13795 [cond-mat.mtrl-sci] | Atomistic graph networks for experimental materials property prediction
[53] | Chen C, Zuo Y, Ye W, Li X G, and Ong S 2021 Nat. Comput. Sci. 1 46 | Learning properties of ordered and disordered materials from multi-fidelity data
[54] | Lee J and Asahi R 2021 Comput. Mater. Sci. 190 110314 | Transfer learning for materials informatics using crystal graph convolutional neural network