[1] | Kosterlitz J M and Thouless D J 1973 J. Phys. C 6 1181 | Ordering, metastability and phase transitions in two-dimensional systems
[2] | Kosterlitz J M 1974 J. Phys. C 7 1046 | The critical properties of the two-dimensional xy model
[3] | Metropolis N and Ulam S 1949 J. Am. Stat. Assoc. 44 335 | The Monte Carlo Method
[4] | White S R 1992 Phys. Rev. Lett. 69 2863 | Density matrix formulation for quantum renormalization groups
[5] | White S R 1993 Phys. Rev. B 48 10345 | Density-matrix algorithms for quantum renormalization groups
[6] | Verstraete F and Cirac J I 2004 arXiv:cond-mat/0407066 [cond-mat.str-el] | Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions
[7] | Zhao H H, Xie Z Y, Chen Q N, Wei Z C, Cai J W, and Xiang T 2010 Phys. Rev. B 81 174411 | Renormalization of tensor-network states
[8] | Orús R 2019 Nat. Rev. Phys. 1 538 | Tensor networks for complex quantum systems
[9] | Liao H J, Xie Z Y, Chen J, Liu Z Y, Xie H D, Huang R Z, Normand B, and Xiang T 2017 Phys. Rev. Lett. 118 137202 | Gapless Spin-Liquid Ground State in the Kagome Antiferromagnet
[10] | Mei J W, Chen J Y, He H, and Wen X G 2017 Phys. Rev. B 95 235107 | Gapped spin liquid with topological order for the kagome Heisenberg model
[11] | Wang L, Gu Z C, Verstraete F, and Wen X G 2016 Phys. Rev. B 94 075143 | Tensor-product state approach to spin- square antiferromagnetic Heisenberg model: Evidence for deconfined quantum criticality
[12] | LeBlanc J P F, Antipov A E, Becca F, Bulik I W, Chan G K L, Chung C M, Deng Y, Ferrero M, Henderson T M, Jiménez-Hoyos C A, Kozik E, Liu X W, Millis A J, Prokof'ev N V, Qin M, Scuseria G E, Shi H, Svistunov B V, Tocchio L F, Tupitsyn I S, White S R, Zhang S, Zheng B X, Zhu Z, and Gull E (Simons Collaboration on the Many-Electron Problem) 2015 Phys. Rev. X 5 041041 | Solutions of the Two-Dimensional Hubbard Model: Benchmarks and Results from a Wide Range of Numerical Algorithms
[13] | Corboz P, Rice T M, and Troyer M 2014 Phys. Rev. Lett. 113 046402 | Competing States in the - Model: Uniform -Wave State versus Stripe State
[14] | Xie Z Y, Chen J, Qin M P, Zhu J W, Yang L P, and Xiang T 2012 Phys. Rev. B 86 045139 | Coarse-graining renormalization by higher-order singular value decomposition
[15] | Yu J F, Xie Z Y, Meurice Y, Liu Y, Denbleyker A, Zou H, Qin M P, Chen J, and Xiang T 2014 Phys. Rev. E 89 013308 | Tensor renormalization group study of classical model on the square lattice
[16] | Wang C, Qin S M, and Zhou H J 2014 Phys. Rev. B 90 174201 | Topologically invariant tensor renormalization group method for the Edwards-Anderson spin glasses model
[17] | Ran S J, Tirrito E, Peng C, Chen X, Tagliacozzo L, Su G, and Lewenstein M 2020 Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems (Springer Nature) |
[18] | Levin M and Nave C P 2007 Phys. Rev. Lett. 99 120601 | Tensor Renormalization Group Approach to Two-Dimensional Classical Lattice Models
[19] | Xie Z Y, Jiang H C, Chen Q N, Weng Z Y, and Xiang T 2009 Phys. Rev. Lett. 103 160601 | Second Renormalization of Tensor-Network States
[20] | Gu Z C and Wen X G 2009 Phys. Rev. B 80 155131 | Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order
[21] | Evenbly G and Vidal G 2015 Phys. Rev. Lett. 115 180405 | Tensor Network Renormalization
[22] | Yang S, Gu Z C, and Wen X G 2017 Phys. Rev. Lett. 118 110504 | Loop Optimization for Tensor Network Renormalization
[23] | Bal M, Mariën M, Haegeman J, and Verstraete F 2017 Phys. Rev. Lett. 118 250602 | Renormalization Group Flows of Hamiltonians Using Tensor Networks
[24] | Vidal G 2003 Phys. Rev. Lett. 91 147902 | Efficient Classical Simulation of Slightly Entangled Quantum Computations
[25] | Orús R and Vidal G 2008 Phys. Rev. B 78 155117 | Infinite time-evolving block decimation algorithm beyond unitary evolution
[26] | Zauner-Stauber V, Vanderstraeten L, Fishman M T, Verstraete F, and Haegeman J 2018 Phys. Rev. B 97 045145 | Variational optimization algorithms for uniform matrix product states
[27] | Nishino T and Okunishi K 1996 J. Phys. Soc. Jpn. 65 891 | Corner Transfer Matrix Renormalization Group Method
[28] | Orús R and Vidal G 2009 Phys. Rev. B 80 094403 | Simulation of two-dimensional quantum systems on an infinite lattice revisited: Corner transfer matrix for tensor contraction
[29] | Fishman M T, Vanderstraeten L, Zauner-Stauber V, Haegeman J, and Verstraete F 2018 Phys. Rev. B 98 235148 | Faster methods for contracting infinite two-dimensional tensor networks
[30] | Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (London: Academic Press) |
[31] | Corboz P, Lajkó M, Läuchli A M, Penc K, and Mila F 2012 Phys. Rev. X 2 041013 | Spin-Orbital Quantum Liquid on the Honeycomb Lattice
[32] | Xie Z Y, Liao H J, Huang R Z, Xie H D, Chen J, Liu Z Y, and Xiang T 2017 Phys. Rev. B 96 045128 | Optimized contraction scheme for tensor-network states
[33] | Jahromi S S, Orús R, Kargarian M, and Langari A 2018 Phys. Rev. B 97 115161 | Infinite projected entangled-pair state algorithm for ruby and triangle-honeycomb lattices
[34] | Kasteleyn P W 1963 J. Math. Phys. 4 287 | Dimer Statistics and Phase Transitions
[35] | Vanderstraeten L, Vanhecke B, and Verstraete F 2018 Phys. Rev. E 98 042145 | Residual entropies for three-dimensional frustrated spin systems with tensor networks
[36] | Potts R B 1952 Math. Proc. Cambridge Philos. Soc. 48 106 | Some generalized order-disorder transformations
[37] | Wu F Y 1982 Rev. Mod. Phys. 54 235 | The Potts model
[38] | José J V, Kadanoff L P, Kirkpatrick S, and Nelson D R 1977 Phys. Rev. B 16 1217 | Renormalization, vortices, and symmetry-breaking perturbations in the two-dimensional planar model
[39] | Tomita Y and Okabe Y 2002 Phys. Rev. B 65 184405 | Probability-changing cluster algorithm for two-dimensional and clock models
[40] | Rastelli E, Regina S, and Tassi A 2004 Phys. Rev. B 69 174407 | Monte Carlo simulation of a planar rotator model with symmetry-breaking fields
[41] | Borisenko O, Cortese G, Fiore R, Gravina M, and Papa A 2011 Phys. Rev. E 83 041120 | Numerical study of the phase transitions in the two-dimensional Z(5) vector model
[42] | Kramers H A and Wannier G H 1941 Phys. Rev. 60 252 | Statistics of the Two-Dimensional Ferromagnet. Part I
[43] | Chen J, Liao H J, Xie H D, Han X J, Huang R Z, Cheng S, Wei Z C, Xie Z Y, and Xiang T 2017 Chin. Phys. Lett. 34 050503 | Phase Transition of the q-State Clock Model: Duality and Tensor Renormalization
[44] | Suzuki M 1967 Prog. Theor. Phys. 37 770 | Solution of Potts Model for Phase Transition
[45] | Chatelain C 2014 J. Stat. Mech.: Theory Exp. 2014 P11022 | DMRG study of the Berezinskii–Kosterlitz–Thouless transitions of the 2D five-state clock model
[46] | Chen Y, Xie Z Y, and Yu J F 2018 Chin. Phys. B 27 080503 | Phase transitions of the five-state clock model on the square lattice
[47] | Li Z Q, Yang L P, Xie Z Y, Tu H H, Liao H J, and Xiang T 2020 Phys. Rev. E 101 060105 | Critical properties of the two-dimensional -state clock model
[48] | Chen Y, Ji K, Xie Z Y, and Yu J F 2020 Phys. Rev. B 101 165123 | Cross derivative of the Gibbs free energy: A universal and efficient method for phase transitions in classical spin models
[49] | Nishino T and Okunishi K 1998 J. Phys. Soc. Jpn. 67 3066 | A Density Matrix Algorithm for 3D Classical Models
[50] | Orús R 2012 Phys. Rev. B 85 205117 | Exploring corner transfer matrices and corner tensors for the classical simulation of quantum lattice systems