Microscopic Magnetic Origin of Rhombohedral Distortion in NiO

  • Received Date: March 20, 2022
  • Published Date: May 31, 2022
  • Numerous investigations have been conducted to explore the structural phase transition in antiferromagnetic 3d transition metal monoxides accompanied by appearance of magnetic phase transition. However, how the spins induce distortion in the high symmetric structure has not yet been fully understood. In this study, the monoxide NiO is used as an example to investigate what lowers the structural symmetry. By comparing two different magnetic structures, our results reveal that the spin–lattice coupling is responsible for such a structural distortion. Then, a spin–lattice model, including the strain component, is constructed to simulate the transition procedure. Moreover, the results from the first-principles calculations are used to compare with our model results. Both first-principles calculations and model simulations clarify the structural phase transition caused by a unique magnetic arrangement.
  • Article Text

  • [1]
    Greenwald S and Smart J S 1950 Nature 166 523 doi: 10.1038/166523a0

    CrossRef Google Scholar

    [2]
    Roth W L 1958 Phys. Rev. 110 1333 doi: 10.1103/PhysRev.110.1333

    CrossRef Google Scholar

    [3]
    Schrön A, Rödl C, and Bechstedt F 2012 Phys. Rev. B 86 115134 doi: 10.1103/PhysRevB.86.115134

    CrossRef Google Scholar

    [4]
    Sawatzky G A and Allen J W 1984 Phys. Rev. Lett. 53 2339 doi: 10.1103/PhysRevLett.53.2339

    CrossRef Google Scholar

    [5]
    Rooksby H 1948 Acta Crystallogr. 1 226 doi: 10.1107/S0365110X48000612

    CrossRef Google Scholar

    [6]
    Cracknell A P and Joshua S J 1969 Mathematical Proceedings of the Cambridge Philosophical Society 66 493 doi: 10.1017/S0305004100045229

    CrossRef Google Scholar

    [7]
    Sugiyama I, Shibata N, Wang Z, Kobayashi S, Yamamoto T, and Ikuhara Y 2013 Nat. Nanotechnol. 8 266 doi: 10.1038/nnano.2013.45

    CrossRef Google Scholar

    [8]
    Lin W, Chen K, Zhang S, and Chien C L 2016 Phys. Rev. Lett. 116 186601 doi: 10.1103/PhysRevLett.116.186601

    CrossRef Google Scholar

    [9]
    Machado F L A, Ribeiro P R T, Holanda J, Rodríguez-Suárez R L, Azevedo A, and Rezende S M 2017 Phys. Rev. B 95 104418 doi: 10.1103/PhysRevB.95.104418

    CrossRef Google Scholar

    [10]
    Bartel L C and Morosin B 1971 Phys. Rev. B 3 1039 doi: 10.1103/PhysRevB.3.1039

    CrossRef Google Scholar

    [11]
    Toussaint C 1971 J. Appl. Crystallogr. 4 293 doi: 10.1107/S0021889871007003

    CrossRef Google Scholar

    [12]
    Krüger E 2020 Symmetry 12 56 doi: 10.3390/sym12010056

    CrossRef Google Scholar

    [13]
    Morosin B 1970 Phys. Rev. B 1 236 doi: 10.1103/PhysRevB.1.236

    CrossRef Google Scholar

    [14]
    Cheetham A K and Hope D A O 1983 Phys. Rev. B 27 6964 doi: 10.1103/PhysRevB.27.6964

    CrossRef Google Scholar

    [15]
    Rodbell D S and Owen J 1964 J. Appl. Phys. 35 1002 doi: 10.1063/1.1713351

    CrossRef Google Scholar

    [16]
    Balagurov A M, Bobrikov I A, Sumnikov S V, Yushankhai V Y, and Mironova-Ulmane N 2016 JETP Lett. 104 88 doi: 10.1134/S0021364016140071

    CrossRef Google Scholar

    [17]
    Li Y Y 1955 Phys. Rev. 100 627 doi: 10.1103/PhysRev.100.627

    CrossRef Google Scholar

    [18]
    Phillips T G and White R L 1967 Phys. Rev. 153 616 doi: 10.1103/PhysRev.153.616

    CrossRef Google Scholar

    [19]
    Pask J E, Singh D J, Mazin I I, Hellberg C S, and Kortus J 2001 Phys. Rev. B 64 024403 doi: 10.1103/PhysRevB.64.024403

    CrossRef Google Scholar

    [20]
    Linnera J and Karttunen A J 2019 Phys. Rev. B 100 144307 doi: 10.1103/PhysRevB.100.144307

    CrossRef Google Scholar

    [21]
    Harrison W A 2007 Phys. Rev. B 76 054417 doi: 10.1103/PhysRevB.76.054417

    CrossRef Google Scholar

    [22]
    Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 doi: 10.1016/0927-02569600008-0

    CrossRef Google Scholar

    [23]
    Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 doi: 10.1103/PhysRevB.59.1758

    CrossRef Google Scholar

    [24]
    Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 doi: 10.1103/PhysRevLett.77.3865

    CrossRef Google Scholar

    [25]
    Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505 doi: 10.1103/PhysRevB.57.1505

    CrossRef Google Scholar

    [26]
    Li L and Kanai Y 2015 Phys. Rev. B 91 235304 doi: 10.1103/PhysRevB.91.235304

    CrossRef Google Scholar

    [27]
    Li X, Yu H, Lou F, Feng J, Whangbo M H, and Xiang H 2021 Molecules 26 26 doi: 10.3390/molecules26010026

    CrossRef Google Scholar

    [28]
    Lu X Z, Wu X, and Xiang H J 2015 Phys. Rev. B 91 100405 doi: 10.1103/PhysRevB.91.100405

    CrossRef Google Scholar

    [29]
    Ni J Y, Li X Y, Amoroso D, He X, Feng J S, Kan E J, Picozzi S, and Xiang H J 2021 Phys. Rev. Lett. 127 247204 doi: 10.1103/PhysRevLett.127.247204

    CrossRef Google Scholar

    [30]
    Hutchings M T and Samuelsen E J 1972 Phys. Rev. B 6 3447 doi: 10.1103/PhysRevB.6.3447

    CrossRef Google Scholar

    [31]
    Shanker R and Singh R A 1973 Phys. Rev. B 7 5000 doi: 10.1103/PhysRevB.7.5000

    CrossRef Google Scholar

    [32]
    Coey J M D 2009 Magnetism and Magnetic Materials New York: Cambridge University Press

    Google Scholar

    [33]
    Shull C G, Strauser W A, and Wollan E O 1951 Phys. Rev. 83 333 doi: 10.1103/PhysRev.83.333

    CrossRef Google Scholar

    [34]
    Li J, Feng J, Wang P, Kan E, and Xiang H 2021 Sci. Chin. Phys. Mech. & Astron. 64 286811 doi: 10.1007/s11433-021-1717-9

    CrossRef Google Scholar

Catalog

    Article views (264) PDF downloads (465) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return