[1] | Bardeen J, Cooper L N, and Schrieffer J R 1957 Phys. Rev. 108 1175 | Theory of Superconductivity
[2] | Kamerlingh Onnes H 1911 Commun. Phys. Lab. Univ. Leiden 122 122 |
[3] | Drozdov A P, Kong P P, Minkov V S, Besedin S P, Kuzovnikov M A, Mozaffari S, Balicas L, Balakirev F F, Graf D E, Prakapenka V B, Greenberg E, Knyazev D A, Tkacz M, and Eremets M I 2019 Nature 569 528 | Superconductivity at 250 K in lanthanum hydride under high pressures
[4] | Nagamatsu J, Nakagawa N, Muranaka T, Zenitani Y, and Akimitsu J 2001 Nature 410 63 | Superconductivity at 39 K in magnesium diboride
[5] | Sigrist M and Ueda K 1991 Rev. Mod. Phys. 63 239 | Phenomenological theory of unconventional superconductivity
[6] | Cooper L N 1956 Phys. Rev. 104 1189 | Bound Electron Pairs in a Degenerate Fermi Gas
[7] | Harlingen V D J 1995 Rev. Mod. Phys. 67 515 | Phase-sensitive tests of the symmetry of the pairing state in the high-temperature superconductors—Evidence for symmetry
[8] | Anderson P W 1987 Science 235 1196 | The Resonating Valence Bond State in La 2 CuO 4 and Superconductivity
[9] | Wu X X, Sante D D, Schwemmer T, Hanke W, Hwang H Y, Raghu S, and Thomale R 2020 Phys. Rev. B 101 060504 | Robust -wave superconductivity of infinite-layer nickelates
[10] | Bandyopadhyay S, Adhikary P, Das T, Dasgupta I, and Saha-Dasgupta T 2020 Phys. Rev. B 102 220502 | Superconductivity in infinite-layer nickelates: Role of orbitals
[11] | Nomura Y, Hirayama M, Tadano T, Yoshimoto Y, Nakamura K, and Arita R 2019 Phys. Rev. B 100 205138 | Formation of a two-dimensional single-component correlated electron system and band engineering in the nickelate superconductor
[12] | Botana A S and Norman M R 2020 Phys. Rev. X 10 011024 | Similarities and Differences between and and Implications for Superconductivity
[13] | Zhang M, Zhang Y, Guo H, and Yang F 2021 Chin. Phys. B 30 108204 | Theory of unconventional superconductivity in nickelate-based materials*
[14] | Zhang X M and Li B 2022 J. Solid State Chem. 306 122806 | Structural, magnetic, electronic, and phonon properties of NdNiO2 under pressure from first-principles
[15] | Jiang P, Si L, Liao Z, and Zhong Z 2019 Phys. Rev. B 100 201106 | Electronic structure of rare-earth infinite-layer
[16] | Lin H, Gawryluk D J, Klein Y M, Huangfu S, Pomjakushina E, von Rohr F, and Schilling A 2022 New J. Phys. 24 013022 | Universal spin-glass behaviour in bulk LaNiO2 , PrNiO2 and NdNiO2
[17] | Gu Y, Zhu S, Wang X H J, and Chen H 2020 Commun. Phys. 3 84 | A substantial hybridization between correlated Ni-d orbital and itinerant electrons in infinite-layer nickelates
[18] | Li D, Lee K, Wang B Y, Osada M, Crossley S, Lee H R, Cui Y, Hikita Y, and Hwang H Y 2019 Nature 572 624 | Superconductivity in an infinite-layer nickelate
[19] | Osada M, Wang B Y, Goodge B H, Harvey S P, Lee K, Li D, and Hwang H Y 2021 Adv. Mater. 33 2104083 | Nickelate Superconductivity without Rare‐Earth Magnetism: (La,Sr)NiO2
[20] | Osada M, Wang B Y, Goodge B H, Lee K, Yoon H, Sakuma K, Li D, Miura M, Kourkoutis L F, and Hwang H Y 2020 Nano Lett. 20 5735 | A Superconducting Praseodymium Nickelate with Infinite Layer Structure
[21] | Ryee S, Yoon H, Kim T J, Jeong M Y, and Han M J 2020 Phys. Rev. B 101 064513 | Induced magnetic two-dimensionality by hole doping in the superconducting infinite-layer nickelate
[22] | Li D, Wang B Y, Lee K, Harvey S P, Osada M, Goodge B H, and Hwang H Y 2020 Phys. Rev. Lett. 125 027001 | Superconducting Dome in Infinite Layer Films
[23] | Gu Q, Li Y, Wan S, Li H, Guo W, Yang H, and Wen H H 2020 Nat. Commun. 11 6027 | Single particle tunneling spectrum of superconducting Nd1-xSrxNiO2 thin films
[24] | Li Q, He C, Si J, Zhu X, Zhang Y, and Wen H H 2020 Commun. Mater. 1 16 | Design of a multifunctional polar metal via first-principles high-throughput structure screening
[25] | Osada M, Wang B Y, Lee K, Li D, and Hwang H Y 2020 Phys. Rev. Mater. 4 121801 | Phase diagram of infinite layer praseodymium nickelate thin films
[26] | Zeng S, Tang C S, Yin X, Li C, Li M, Huang Z, and Ariando A 2020 Phys. Rev. Lett. 125 147003 | Phase Diagram and Superconducting Dome of Infinite-Layer Thin Films
[27] | Zhang H, Jin L, Wang S, Xi B, Shi X, Ye F, and Mei J W 2020 Phys. Rev. Res. 2 013214 | Effective Hamiltonian for nickelate oxides
[28] | Wang Y, Kang C J, Miao H, and Kotliar G 2020 Phys. Rev. B 102 161118 | Hund's metal physics: From to
[29] | Kang C J and Kotliar G 2021 Phys. Rev. Lett. 126 127401 | Optical Properties of the Infinite-Layer and Hidden Hund’s Physics
[30] | Lechermann F 2020 Phys. Rev. X 10 041002 | Multiorbital Processes Rule the Normal State
[31] | Gu Q and Wen H 2021 Innovation 3 100202 | Superconductivity in nickel-based 112 systems
[32] | Talantsev E F 2020 Results Phys. 17 103118 | Classifying superconductivity in an infinite-layer nickelate Nd0.8Sr0.2NiO2
[33] | Xiang Y et al. 2021 Chin. Phys. Lett. 38 047401 | Physical Properties Revealed by Transport Measurements for Superconducting Nd0.8 Sr0.2 NiO2 Thin Films
[34] | Lechermann F 2021 Phys. Rev. Mater. 5 044803 | Doping-dependent character and possible magnetic ordering of
[35] | Zhou X R, Feng Z X, Qin P X, Yan H, Wang X N, Nie P, and Liu Z Q 2021 Rare Met. 40 2847 | Negligible oxygen vacancies, low critical current density, electric-field modulation, in-plane anisotropic and high-field transport of a superconducting Nd0.8Sr0.2NiO2/SrTiO3 heterostructure
[36] | Leonov I 2021 J. Alloys Compd. 883 160888 | Effect of lattice strain on the electronic structure and magnetic correlations in infinite-layer (Nd,Sr)NiO2
[37] | Botana A S, Bernardini F, and Cano A 2021 J. Exp. Theor. Phys. 132 618 | Nickelate Superconductors: An Ongoing Dialog between Theory and Experiments
[38] | LaBollita H and Botana A S 2022 Phys. Rev. B 105 085118 | Correlated electronic structure of a quintuple-layer nickelate
[39] | Wang B X, Zheng H, Krivyakina E, Chmaissem O, Lopes P P, Lynn J W, and Phelan D 2020 Phys. Rev. Mater. 4 084409 | Synthesis and characterization of bulk and
[40] | Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli M B, Calandra M, Car R, Cavazzoni C, Ceresoli D, Cococcioni M, and Baroni S 2017 J. Phys.: Condens. Matter 29 465901 | Advanced capabilities for materials modelling with Quantum ESPRESSO
[41] | Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864 | Inhomogeneous Electron Gas
[42] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | Self-Consistent Equations Including Exchange and Correlation Effects
[43] | Baroni S, de Gironcoli S, Dal C A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515 | Phonons and related crystal properties from density-functional perturbation theory
[44] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[45] | Corso A D 2014 Comput. Mater. Sci. 95 337 | Pseudopotentials periodic table: From H to Pu
[46] | Eliashberg G M 1960 Sov. Phys.-JETP 11 696 |
[47] | Allen P B 1972 Phys. Rev. B 6 2577 | Neutron Spectroscopy of Superconductors
[48] | Lee K H, Chang K J, and Cohen M L 1995 Phys. Rev. B 52 1425 | First-principles calculations of the Coulomb pseudopotential : Application to Al
[49] | Richardson C F and Ashcroft N W 1997 Phys. Rev. Lett. 78 118 | High Temperature Superconductivity in Metallic Hydrogen: Electron-Electron Enhancements
[50] | Hayward M A and Rosseinsky M J 2003 Solid State Sci. 5 839 | Synthesis of the infinite layer Ni(I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride