[1] | Goldman N, Budich J C, and Zoller P 2016 Nat. Phys. 12 639 | Topological quantum matter with ultracold gases in optical lattices
[2] | Zhang D W, Zhu Y Q, Zhao Y X, Yan H, and Zhu S L 2019 Adv. Phys. 67 253 | Topological quantum matter with cold atoms
[3] | Cooper N R, Dalibard J, and Spielman I B 2019 Rev. Mod. Phys. 91 015005 | Topological bands for ultracold atoms
[4] | Boada O, Celi A, Latorre J I, and Lewenstein M 2012 Phys. Rev. Lett. 108 133001 | Quantum Simulation of an Extra Dimension
[5] | Celi A, Massignan P, Ruseckas J, Goldman N, Spielman I B, Juzeliūnas G, and Lewenstein M 2014 Phys. Rev. Lett. 112 043001 | Synthetic Gauge Fields in Synthetic Dimensions
[6] | Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, and Fallani L 2015 Science 349 1510 | Observation of chiral edge states with neutral fermions in synthetic Hall ribbons
[7] | Stuhl B K, Lu H I, Aycock L M, Genkina D, and Spielman I B 2015 Science 349 1514 | Visualizing edge states with an atomic Bose gas in the quantum Hall regime
[8] | Chalopin T, Satoor T, Evrard A, Mahkalov V, Dalibard J, Lopes R, and Nascimbene S 2020 Nat. Phys. 16 1017 | Probing chiral edge dynamics and bulk topology of a synthetic Hall system
[9] | Wall M L, Koller A P, Li S, Zhang X, Cooper N R, Ye J, and Rey A M 2016 Phys. Rev. Lett. 116 035301 | Synthetic Spin-Orbit Coupling in an Optical Lattice Clock
[10] | Livi L F, Cappellini G, Diem M, Franchi L, Clivati C, Frittelli M, Levi F, Calonico D, Catani J, Inguscio M, and Fallani L 2016 Phys. Rev. Lett. 117 220401 | Synthetic Dimensions and Spin-Orbit Coupling with an Optical Clock Transition
[11] | Kolkowitz S, Bromley S, Bothwell T, Wall M L, Marti G E, Koller A P, Zhang X, Rey A M, and Ye J 2017 Nature 542 66 | Spin–orbit-coupled fermions in an optical lattice clock
[12] | Kanungo S K, Whalen J D, Lu Y, Yuan M, Dasgupta S, Dunning F B, Hazzard K R A, and Killian T C 2022 Nat. Commun. 13 972 | Realizing topological edge states with Rydberg-atom synthetic dimensions
[13] | Meier E, An F, and Gadway B 2016 Nat. Commun. 7 13986 | Observation of the topological soliton state in the Su–Schrieffer–Heeger model
[14] | Li Y, Zhang J, Wang Y, Du H, Wu J, Liu W, Mei F, Ma J, Xiao L, and Jia S 2022 Light: Sci. & Appl. 11 13 | Atom-optically synthetic gauge fields for a noninteracting Bose gas
[15] | Kang J H, Han J H, and Shin Y 2020 New J. Phys. 22 013023 | Creutz ladder in a resonantly shaken 1D optical lattice
[16] | Wang D W, Liu R B, Zhu S Y, and Scully M O 2015 Phys. Rev. Lett. 114 043602 | Superradiance Lattice
[17] | Chen L, Wang P, Meng Z, Huang L, Cai H, Wang D W, Zhu S Y, and Zhang J 2018 Phys. Rev. Lett. 120 193601 | Experimental Observation of One-Dimensional Superradiance Lattices in Ultracold Atoms
[18] | Cai H, Liu J, Wu J, He Y, Zhu S Y, Zhang J X, and Wang D W 2019 Phys. Rev. Lett. 122 023601 | Experimental Observation of Momentum-Space Chiral Edge Currents in Room-Temperature Atoms
[19] | He Y, Mao R, Cai H, Zhang J X, Li Y, Yuan L, Zhu S Y, and Wang D W 2021 Phys. Rev. Lett. 126 103601 | Flat-Band Localization in Creutz Superradiance Lattices
[20] | Mi C, Nawaz K S, Chen L, Wang P, Cai H, Wang D W, Zhu S Y, and Zhang J 2021 Phys. Rev. A 104 043326 | Time-resolved interplay between superradiant and subradiant states in superradiance lattices of Bose-Einstein condensates
[21] | Fabre A, Bouhiron J B, Satoor T, Lopes R, and Nascimbene S 2021 arXiv:2110.12971v1 [cond-mat.quant-gas] | Laughlin's topological charge pump in an atomic Hall cylinder
[22] | Lang L J, Cai X, and Chen S 2012 Phys. Rev. Lett. 108 220401 | Edge States and Topological Phases in One-Dimensional Optical Superlattices
[23] | Mei F, Zhu S L, Zhang Z M, Oh C H, and Goldman N 2012 Phys. Rev. A 85 013638 | Simulating topological insulators with cold atoms in a one-dimensional optical lattice
[24] | Hofstadter D R 1976 Phys. Rev. B 14 2239 | Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
[25] | Aubry S and André G 1980 Ann. Isr. Phys. Soc. 3 133 |
[26] | Grempel D R, Fishman S, and Prange R E 1982 Phys. Rev. Lett. 49 833 | Localization in an Incommensurate Potential: An Exactly Solvable Model
[27] | Modugno M 2009 New J. Phys. 11 033023 | Exponential localization in one-dimensional quasi-periodic optical lattices
[28] | Biddle J, Wang B, Jr Priour D J, and Sarma S D 2009 Phys. Rev. A 80 021603(R) | Localization in one-dimensional incommensurate lattices beyond the Aubry-André model
[29] | Biddle J, Priour Jr D J, Wang B, and Sarma S D 2011 Phys. Rev. B 83 075105 | Localization in one-dimensional lattices with non-nearest-neighbor hopping: Generalized Anderson and Aubry-André models
[30] | Larcher M, Modugno M, and Dalfovo F 2011 Phys. Rev. A 83 013624 | Localization in momentum space of ultracold atoms in incommensurate lattices
[31] | Zhou L, Pu H, and Zhang W 2013 Phys. Rev. A 87 023625 | Anderson localization of cold atomic gases with effective spin-orbit interaction in a quasiperiodic optical lattice
[32] | Qin P, Yin C, and Chen S 2014 Phys. Rev. B 90 054303 | Dynamical Anderson transition in one-dimensional periodically kicked incommensurate lattices
[33] | Li X, Ganeshan S, Pixley J H, and Sarma S D 2015 Phys. Rev. Lett. 115 186601 | Many-Body Localization and Quantum Nonergodicity in a Model with a Single-Particle Mobility Edge
[34] | Li X, Pixley J H, Deng D L, Ganeshan S, and Sarma S D 2016 Phys. Rev. B 93 184204 | Quantum nonergodicity and fermion localization in a system with a single-particle mobility edge
[35] | Cao Y, Xianlong G, Liu X J, and Hu H 2016 Phys. Rev. A 93 043621 | Anderson localization of Cooper pairs and Majorana fermions in an ultracold atomic Fermi gas with synthetic spin-orbit coupling
[36] | Yang C, Wang Y, Wang P, Gao X, and Chen S 2017 Phys. Rev. B 95 184201 | Dynamical signature of localization-delocalization transition in a one-dimensional incommensurate lattice
[37] | Li X, Li X, and Sarma S D 2017 Phys. Rev. B 96 085119 | Mobility edges in one-dimensional bichromatic incommensurate potentials
[38] | Li X and Sarma S D 2020 Phys. Rev. B 101 064203 | Mobility edge and intermediate phase in one-dimensional incommensurate lattice potentials
[39] | Yin H, Hu J, Ji A C, nas G J Liu X J, and Sun Q 2020 Phys. Rev. Lett. 124 113601 | Localization Driven Superradiant Instability
[40] | Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, and Inguscio M 2008 Nature 453 895 | Anderson localization of a non-interacting Bose–Einstein condensate
[41] | Kraus Y E, Lahini Y, Ringel Z, Verbin M, and Zilberberg O 2012 Phys. Rev. Lett. 109 106402 | Topological States and Adiabatic Pumping in Quasicrystals
[42] | Zeng Q B, Yang Y B, and Xu Y 2020 Phys. Rev. B 101 020201(R) | Topological phases in non-Hermitian Aubry-André-Harper models
[43] | Zeng Q B, Yang Y B, and Xu Y 2020 Phys. Rev. B 101 241104(R) | Higher-order topological insulators and semimetals in generalized Aubry-André-Harper models
[44] | Ganeshan S, Sun K, and Sarma S D 2013 Phys. Rev. Lett. 110 180403 | Topological Zero-Energy Modes in Gapless Commensurate Aubry-André-Harper Models
[45] | Cestari J C C, Foerster A, and Gusmao M A 2016 Phys. Rev. B 93 205441 | Fate of topological states in incommensurate generalized Aubry-André models
[46] | Liu T, Wang P, and Gao X 2016 arXiv:1609.06939 [cond-mat.dis-nn] | Phase diagram of the off-diagonal Aubry-André model
[47] | Lohse M, Schweizer C, Zilberberg O, Aidelsburger M, and Bloch I 2016 Nat. Phys. 12 350 | A Thouless quantum pump with ultracold bosonic atoms in an optical superlattice
[48] | Nakajima S, Tomita T, Taie S, Ichinose T, Ozawa H, Wang L, Troyer M, and Takahashi Y 2016 Nat. Phys. 12 296 | Topological Thouless pumping of ultracold fermions
[49] | Lu H I, Schemmer M, Aycock L M, Genkina D, Sugawa S, and Spielman I B 2016 Phys. Rev. Lett. 116 200402 | Geometrical Pumping with a Bose-Einstein Condensate
[50] | Lohse M, Schweizer C, Price H M, Zilberberg O, and Bloch I 2018 Nature 553 55 | Exploring 4D quantum Hall physics with a 2D topological charge pump
[51] | Wang L, Troyer M, and Dai X 2013 Phys. Rev. Lett. 111 026802 | Topological Charge Pumping in a One-Dimensional Optical Lattice
[52] | Mei F, You J B, Zhang D W, Yang X C, Fazio R, Zhu S L, and Kwek L C 2014 Phys. Rev. A 90 063638 | Topological insulator and particle pumping in a one-dimensional shaken optical lattice
[53] | Wei R and Mueller E J 2015 Phys. Rev. A 92 013609 | Anomalous charge pumping in a one-dimensional optical superlattice
[54] | Ke Y, Qin X, Mei F, Zhong H, Kivshar Y S, and Lee C 2016 Laser & Photon. Rev. 10 995 | Topological phase transitions and Thouless pumping of light in photonic waveguide arrays
[55] | Ke Y, Qin X, Kivshar Y S, and Lee C 2017 Phys. Rev. A 95 063630 | Multiparticle Wannier states and Thouless pumping of interacting bosons
[56] | Hayward A, Schweizer C, Lohse M, Aidelsburger M, and Meisner F H 2018 Phys. Rev. B 98 245148 | Topological charge pumping in the interacting bosonic Rice-Mele model
[57] | Mei F, Chen G, Goldman N, Xiao L, and Jia S 2019 New J. Phys. 21 095002 | Topological magnon insulator and quantized pumps from strongly-interacting bosons in optical superlattices
[58] | Chen Q, Cai J, and Zhang S 2020 Phys. Rev. A 101 043614 | Topological quantum pumping in spin-dependent superlattices with glide symmetry
[59] | Goldman N, Dalibard J, Dauphin A, Gerbier F, Lewenstein M, Zoller P, and Spielman I B 2013 Proc. Natl. Acad. Sci. USA 110 6736 | Direct imaging of topological edge states in cold-atom systems
[60] | Leder M, Grossert C, Sitta L, Genske M, Rosch A, and Weitz M 2016 Nat. Commun. 7 13112 | Real-space imaging of a topologically protected edge state with ultracold atoms in an amplitude-chirped optical lattice
[61] | Goldman N, Beugnon J, and Gerbier F 2012 Phys. Rev. Lett. 108 255303 | Detecting Chiral Edge States in the Hofstadter Optical Lattice
[62] | Kraus Y E, Ringel Z, and Zilberberg O 2013 Phys. Rev. Lett. 111 226401 | Four-Dimensional Quantum Hall Effect in a Two-Dimensional Quasicrystal
[63] | Price H M, Zilberberg O, Ozawa T, Carusotto I, and Goldman N 2015 Phys. Rev. Lett. 115 195303 | Four-Dimensional Quantum Hall Effect with Ultracold Atoms
[64] | Ganeshan S, Pixley J H, and Sarma S D 2015 Phys. Rev. Lett. 114 146601 | Nearest Neighbor Tight Binding Models with an Exact Mobility Edge in One Dimension