[1] | Kota S, Sokol M, and Barsoum M W 2020 Int. Mater. Rev. 65 226 | A progress report on the MAB phases: atomically laminated, ternary transition metal borides
[2] | Lu J, Kota S, Barsoum M W, and Hultman L 2017 Mater. Res. Lett. 5 235 | Atomic structure and lattice defects in nanolaminated ternary transition metal borides
[3] | Gong Y, Guo B, Wang X, Ye W, Li R, Chen X, Wang J, and Zhang G 2020 Int. J. Refract. Met. Hard Mater. 93 105345 | Preparation of fine-grained MoAlB with preferable mechanical properties and oxidation resistance
[4] | Ade M and Hillebrecht H 2015 Inorg. Chem. 54 6122 | Ternary Borides Cr2 AlB2 , Cr3 AlB4 , and Cr4 AlB6 : The First Members of the Series (CrB2 ) n CrAl with n = 1, 2, 3 and a Unifying Concept for Ternary Borides as MAB-Phases
[5] | Qi X X, Song G P, Yin W L, Wang M F, He X D, Zheng Y T, Wang R G, and Bai Y L 2020 J. Inorg. Mater. 35 53 | Phase Stability and Mechanical Property of Newly-discovered Ternary Layered Boride Cr4AlB4
[6] | Bai Y, Qi X, He X, Sun D, Kong F, Zheng Y, Wang R, and Duff A I 2019 J. Am. Ceram. Soc. 102 3715 | Phase stability and weak metallic bonding within ternary‐layered borides CrAlB, Cr2 AlB2 , Cr3 AlB4 , and Cr4 AlB6
[7] | Jeitschko W 1969 Acta Crystallogr. Sect. B 25 163 | The crystal structure of Fe2AlB2
[8] | Becher H J, Krogmann K, and Peisker E 1966 Z. Anorg. Allg. Chem. 344 140 | �ber das tern�re Borid Mn2AlB2
[9] | Jeitschko W 1966 Monatsh. Chem. - Chem. Mon. 97 1472 | Die Kristallstruktur von MoAlB
[10] | Xiang H, Feng Z, Li Z, and Zhou Y 2018 J. Alloys Compd. 738 461 | Theoretical investigations on mechanical and dynamical properties of MAlB (M = Mo, W) nanolaminated borides at ground-states and elevated temperatures
[11] | Jung W and Petry K 1988 Z. Kristallographie 182 153 |
[12] | Su X, Dong J, Chu L, Sun H, Grasso S, and Hu C 2020 Ceram. Int. 46 15214 | Synthesis, microstructure and properties of MoAlB ceramics prepared by in situ reactive spark plasma sintering
[13] | Kota S, Zapata-Solvas E, Ly A, Lu J, Elkassabany O, Huon A, Lee W E, Hultman L, May S J, and Barsoum M W 2016 Sci. Rep. 6 1 | Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB
[14] | Lu X, Li S, Zhang W, Yu W, and Zhou Y 2019 Ceram. Int. 45 9386 | Thermal shock behavior of a nanolaminated ternary boride: MoAlB
[15] | Kota S, Agne M, Zapata-Solvas E, Dezellus O, Lopez D, Gardiola B, Radovic M, and Barsoum M W 2017 Phys. Rev. B 95 144108 | Elastic properties, thermal stability, and thermodynamic parameters of MoAlB
[16] | Alameda L T, Moradifar P, Metzger Z P, Alem N, and Schaak R E 2018 J. Am. Chem. Soc. 140 8833 | Topochemical Deintercalation of Al from MoAlB: Stepwise Etching Pathway, Layered Intergrowth Structures, and Two-Dimensional MBene
[17] | Alameda L T, Holder C F, Fenton J L, and Schaak R E 2017 Chem. Mater. 29 8953 | Partial Etching of Al from MoAlB Single Crystals To Expose Catalytically Active Basal Planes for the Hydrogen Evolution Reaction
[18] | Akopov G, Yeung M T, and Kaner R B 2017 Adv. Mater. 29 1604506 | Rediscovering the Crystal Chemistry of Borides
[19] | Huang Y, Si J, Lin S, Lv H, Song W, Zhang R, Luo X, Lu W, Zhu X, and Sun Y 2022 Small 18 2104460 | Colossal 3D Electrical Anisotropy of MoAlB Single Crystal
[20] | Zhao L, Xu L, Ding L, Zuo H, and Zhu Z 2020 Phys. Rev. B 102 075139 | Large magnetoresistance and quantum oscillations of a ternary boride MoAlB single crystal
[21] | Miyake K, Matsuura T, and Varma C M 1989 Solid State Commun. 71 1149 | Relation between resistivity and effective mass in heavy-fermion and A15 compounds
[22] | Rice M J 1968 Phys. Rev. Lett. 20 1439 | Electron-Electron Scattering in Transition Metals
[23] | Kadowaki K and Woods S 1986 Solid State Commun. 58 507 | Universal relationship of the resistivity and specific heat in heavy-Fermion compounds
[24] | Candolfi C, Lenoir B, Dauscher A, Bellouard C, Hejtmánek J, Šantavá E, and Tobola J 2007 Phys. Rev. Lett. 99 037006 | Spin Fluctuations and Superconductivity in
[25] | Wang Z, Huang M, Zhao J, Chen C, Huang H, Wang X, Liu P, Wang J, Xiang J, Feng C, Zhang Z, Cui X, Lu Y, Yang S A, and Xiang B 2020 Phys. Rev. Mater. 4 041001 | Fermi liquid behavior and colossal magnetoresistance in layered
[26] | Zhang S B, Sun Y P, Zhao B C, Ang R, Zhu X B, and Song W H 2009 J. Alloys Compd. 479 22 | Influence of K doping on the properties of perovskite molybdates Ba1−xKxMoO3 (0≤x≤0.2)
[27] | Zhang S B, Sun Y P, Zhao B C, Zhu X B, and Song W H 2006 Phys. Status Solidi B 243 1331 | Influence of La doping on the properties of molybdenum perovskite Sr1–xLaxMoO3 (0 ≤x ≤ 0.2)
[28] | Wang J, Nie P, Li X, Zuo H, Fauqué B, Zhu Z, and Behnia K 2020 Proc. Natl. Acad. Sci. USA 117 30215 | Critical point for Bose–Einstein condensation of excitons in graphite
[29] | Ohmichi E and Osada T 2002 Rev. Sci. Instrum. 73 3022 | Torque magnetometry in pulsed magnetic fields with use of a commercial microcantilever
[30] | Blaha P, Schwarz K, Tran F, Laskowski R, Madsen G K H, and Marks L D 2020 J. Chem. Phys. 152 074101 | WIEN2k: An APW+lo program for calculating the properties of solids
[31] | Madsen G K H, Carrete J, and Verstraete M J 2018 Comput. Phys. Commun. 231 140 | BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients
[32] | Ziman J M 1972 Principles of the Theory of Solids (Cambridge: Cambridge University Press) | Principles of the Theory of Solids
[33] | Naughton M J, Ulmet J P, Narjis A, Askenazy S, Chaparala M V, and Hope A P 1997 Rev. Sci. Instrum. 68 4061 | Cantilever magnetometry in pulsed magnetic fields
[34] | Naughton M J, Ulmet J P, Narjis A, Askenazy S, Chaparala M V, and Richter R 1998 Physica B 246–247 125 | Demonstration of cantilever magnetometry in pulsed magnetic fields
[35] | Kanda Y 1991 Sens. Actuators A 28 83 | Piezoresistance effect of silicon
[36] | Lifshitz I and Kosevich A 1956 Sov. Phys.-JETP 2 636 |
[37] | Madsena G K H and Singhb D J 2006 Comput. Phys. Commun. 175 67 | BoltzTraP. A code for calculating band-structure dependent quantities
[38] | Maeno Y, Yoshida K, Hashimoto H, Nishizaki S, Ikeda S I, Nohara M, Fujita T, Mackenzie A P, Hussey N E, Bednorz J G, and Lichtenberg F 1997 J. Phys. Soc. Jpn. 66 1405 | Two-Dimensional Fermi Liquid Behavior of the Superconductor Sr 2 RuO 4
[39] | Zhu Z, Nie P, Fauqué B, Vignolle B, Proust C, McDonald R D, Harrison N, and Behnia K 2019 Phys. Rev. X 9 011058 | Graphite in 90 T: Evidence for Strong-Coupling Excitonic Pairing
[40] | Primak W and Fuchs L H 1954 Phys. Rev. 95 22 | Electrical Conductivities of Natural Graphite Crystals
[41] | Zhu Z, Lin X, Liu J, Fauqué B, Tao Q, Yang C, Shi Y, and Behnia K 2015 Phys. Rev. Lett. 114 176601 | Quantum Oscillations, Thermoelectric Coefficients, and the Fermi Surface of Semimetallic
[42] | Hicks C W, Gibbs A S, Mackenzie A P, Takatsu H, Maeno Y, and Yelland E A 2012 Phys. Rev. Lett. 109 116401 | Quantum Oscillations and High Carrier Mobility in the Delafossite
[43] | Holm W, Andersson M, Rapp Ö, Kulikov M A, and Makarenko I N 1993 Phys. Rev. B 48 4227 | Anisotropic fluctuation magnetoconductivity in a single crystal above
[44] | Shamoto S, Onoda M, Sato M, and Hosoya S 1987 Solid State Commun. 62 479 | Anisotropy of the superconducting critical magnetic field HC2 of LaMCuO system(M = Sr and Ba)
[45] | Chen X H, Yu M, Ruan K Q, Li S Y, Gui Z, Zhang G C, and Cao L Z 1998 Phys. Rev. B 58 14219 | Anisotropic resistivities of single-crystal with different oxygen content
[46] | Bryja H, Hühne R, Iida K, Molatta S, Sala A, Putti M, Schultz L, Nielsch K, and Hänisch J 2017 Supercond. Sci. Technol. 30 115008 | Deposition and properties of Fe(Se,Te) thin films on vicinal CaF2 substrates
[47] | Wang Z C, Liu Y, Wu S Q, Shao Y T, Ren Z, and Cao G H 2019 Phys. Rev. B 99 144501 | Giant anisotropy in superconducting single crystals of
[48] | Wang X F, Wu T, Wu G, Chen H, Xie Y L, Ying J J, Yan Y J, Liu R H, and Chen X H 2009 Phys. Rev. Lett. 102 117005 | Anisotropy in the Electrical Resistivity and Susceptibility of Superconducting Single Crystals
[49] | Shirer K R, Modic K A, Zimmerling T, Bachmann M D, König M, Moll P J W, Schoop L, and Mackenzie A P 2019 APL Mater. 7 101116 | Out-of-plane transport in ZrSiS and ZrSiSe microstructures
[50] | Tiong K K, Ho C H, and Huang Y S 1999 Solid State Commun. 111 635 | The electrical transport properties of ReS2 and ReSe2 layered crystals
[51] | Pisoni A, Jacimovic J, Gaál R, Náfrádi B, Berger H, Révay Z, and Forró L 2016 Scr. Mater. 114 48 | Anisotropic transport properties of tungsten disulfide
[52] | Zhang C, Chen X, Almasan C, Gardner J, and Sarrao J 2002 Phys. Rev. B 65 134439 | Low-temperature electrical transport in bilayer manganite
[53] | Limelette P, Hardy V, Auban-Senzier P, Jérome D, Flahaut D, Hébert S, Frésard R, Simon C, Noudem J, and Maignan A 2005 Phys. Rev. B 71 233108 | Strongly correlated properties of the thermoelectric cobalt oxide
[54] | Salvetat J P, Berger H, Halbritter A, Mihaly G, Pavuna D, and Forro L 2000 Europhys. Lett. 52 584 | Crossovers in the out-of-plane resistivity of superconducting Tl2 Ba2 CaCu2 O8 single crystals
[55] | Jacko A, Fjærestad J, and Powell B 2009 Nat. Phys. 5 422 | A unified explanation of the Kadowaki–Woods ratio in strongly correlated metals
[56] | Kumar N, Sun Y, Nicklas M, Watzman S J, Young O, Leermakers I, Hornung J, Klotz J, Gooth J, Manna K et al. 2019 Nat. Commun. 10 1 | Double-slit photoelectron interference in strong-field ionization of the neon dimer
[57] | Bai Y, Qi X, Duff A, Li N, Kong F, He X, Wang R, and Lee W E 2017 Acta Mater. 132 69 | Density functional theory insights into ternary layered boride MoAlB
[58] | Gunst T, Markussen T, Stokbro K, and Brandbyge M 2016 Phys. Rev. B 93 035414 | First-principles method for electron-phonon coupling and electron mobility: Applications to two-dimensional materials
[59] | Lin X, Fauqué B, and Behnia K 2015 Science 349 945 | Scalable T2 resistivity in a small single-component Fermi surface
[60] | Wang J, Wu J, Wang T, Xu Z, Wu J, Hu W, Ren Z, Liu S, Behnia K, and Lin X 2020 Nat. Commun. 11 1 | U1 snRNP regulates cancer cell migration and invasion in vitro
[61] | Koyama T, Yamashita H, Takahashi Y, Kohara T, Watanabe I, Tabata Y, and Nakamura H 2008 Phys. Rev. Lett. 101 126404 | Frustration-Induced Valence Bond Crystal and Its Melting in
[62] | Mackenzie A P, Hussey N E, Diver A J, Julian S R, Maeno Y, Nishizaki S, and Fujita T 1996 Phys. Rev. B 54 7425 | Hall effect in the two-dimensional metal