Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene

    Show all affliationsShow less
  • Received Date: February 15, 2022
  • Published Date: March 31, 2022
  • In marginally twisted bilayer graphene, the Moiré pattern consists of the maximized AB (BA) stacking regions, minimized AA stacking regions and triangular networks of domain walls. Here we realize the strain-modulated electronic structures of marginally twisted bilayer graphene by scanning tunneling microscopy/spectroscopy and density functional theory (DFT) calculations. The experimental data show four peaks near the Fermi energy at the AA regions. DFT calculations indicate that the two new peaks closer to the Fermi level may originate from the intrinsic heterostrain and the electric field implemented by back gate is likely to account for the observed shift of the four peaks. Furthermore, the map across Moiré patterns with different strain strengths exhibits a distinct appearance of the helical edge states.
  • Article Text

  • [1]
    Choi Y, Kemmer J, Peng Y, Thomson A, Arora H, Polski R, Zhang Y, Ren H, Alicea J, Refael G, Von Oppen F, Watanabe K, Taniguchi T, and Nadj-Perge S 2019 Nat. Phys. 15 1174 doi: 10.1038/s41567-019-0606-5

    CrossRef Google Scholar

    [2]
    Jiang Y, Lai X, Watanabe K, Taniguchi T, Haule K, Mao J, and Andrei E Y 2019 Nature 573 91 doi: 10.1038/s41586-019-1460-4

    CrossRef Google Scholar

    [3]
    Kerelsky A, Mcgilly L J, Kennes D M, Xian L, Yankowitz M, Chen S, Watanabe K, Taniguchi T, Hone J, Dean C, Rubio A, and Pasupathy A N 2019 Nature 572 95 doi: 10.1038/s41586-019-1431-9

    CrossRef Google Scholar

    [4]
    Xie Y, Lian B, Jack B, Liu X, Chiu C L, Watanabe K, Taniguchi T, Bernevig B A, and Yazdani A 2019 Nature 572 101 doi: 10.1038/s41586-019-1422-x

    CrossRef Google Scholar

    [5]
    Andrei E Y and Macdonald A H 2020 Nat. Mater. 19 1265 doi: 10.1038/s41563-020-00840-0

    CrossRef Google Scholar

    [6]
    Zhang X, Pan G, Zhang Y, Kang J, and Meng Z Y 2021 Chin. Phys. Lett. 38 077305 doi: 10.1088/0256-307X/38/7/077305

    CrossRef Google Scholar

    [7]
    Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, and Jarillo-Herrero P 2018 Nature 556 43 doi: 10.1038/nature26160

    CrossRef Google Scholar

    [8]
    Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, and Jarillo-Herrero P 2018 Nature 556 80 doi: 10.1038/nature26154

    CrossRef Google Scholar

    [9]
    Sharpe A L, Fox E J, Barnard A W, Finney J, Watanabe K, Taniguchi T, Kastner M A, and Goldhaber-Gordon D 2019 Science 365 605 doi: 10.1126/science.aaw3780

    CrossRef Google Scholar

    [10]
    Shen C, Ying J, Liu L, Liu J, Li N, Wang S, Tang J, Zhao Y, Chu Y, Watanabe K, Taniguchi T, Yang R, Shi D, Qu F, Lu L, Yang W, and Zhang G 2021 Chin. Phys. Lett. 38 047301 doi: 10.1088/0256-307X/38/4/047301

    CrossRef Google Scholar

    [11]
    Huang S, Kim K, Efimkin D K, Lovorn T, Taniguchi T, Watanabe K, Macdonald A H, Tutuc E, and Leroy B J 2018 Phys. Rev. Lett. 121 037702 doi: 10.1103/PhysRevLett.121.037702

    CrossRef Google Scholar

    [12]
    Verbakel J D, Yao Q, Sotthewes K, and Zandvliet H J W 2021 Phys. Rev. B 103 165134 doi: 10.1103/PhysRevB.103.165134

    CrossRef Google Scholar

    [13]
    Yao Q, Chen X, Van Bremen R, Sotthewes K, and Zandvliet H J W 2020 Appl. Phys. Lett. 116 011602 doi: 10.1063/1.5135071

    CrossRef Google Scholar

    [14]
    Du J, Lyu B, Shan W, Chen J, Zhou X, Xie J, Deng A, Hu C, Liang Q, Xie G, Li X, Luo W, and Shi Z 2021 Chin. Phys. Lett. 38 056301 doi: 10.1088/0256-307X/38/5/056301

    CrossRef Google Scholar

    [15]
    Mao J, Milovanovic S P, Andelkovic M, Lai X, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y, and Andrei E Y 2020 Nature 584 215 doi: 10.1038/s41586-020-2567-3

    CrossRef Google Scholar

    [16]
    Edelberg D, Kumar H, Shenoy V, Ochoa H, and Pasupathy A N 2020 Nat. Phys. 16 1097 doi: 10.1038/s41567-020-0953-2

    CrossRef Google Scholar

    [17]
    Ren J, Guo H, Pan J, Zhang Y Y, Wu X, Luo H G, Du S, Pantelides S T, and Gao H J 2014 Nano Lett. 14 4011 doi: 10.1021/nl501425n

    CrossRef Google Scholar

    [18]
    Ren J, Guo H, Pan J, Zhang Y F, Yang Y, Wu X, Du S, Ouyang M, and Gao H J 2017 Phys. Rev. Lett. 119 176806 doi: 10.1103/PhysRevLett.119.176806

    CrossRef Google Scholar

    [19]
    Zhang S, Song Y, Li H, Li J M, Qian K, Liu C, Wang J O, Qian T, Zhang Y Y, Lu J C, Ding H, Lin X, Pan J, Du S X, and Gao H J 2020 Chin. Phys. Lett. 37 068103 doi: 10.1088/0256-307X/37/6/068103

    CrossRef Google Scholar

    [20]
    Xu S G, Berdyugin A I, Kumaravadivel P, Guinea F, Krishna K R, Bandurin D A, Morozov S V, Kuang W, Tsim B, Liu S, Edgar J H, Grigorieva I V, Fal'ko V I, Kim M, and Geim A K 2019 Nat. Commun. 10 4008 doi: 10.1038/s41467-019-11971-7

    CrossRef Google Scholar

    [21]
    Yoo H, Engelke R, Carr S, Fang S, Zhang K, Cazeaux P, Sung S H, Hovden R, Tsen A W, Taniguchi T, Watanabe K, Yi G C, Kim M, Luskin M, Tadmor E B, Kaxiras E, and Kim P 2019 Nat. Mater. 18 448 doi: 10.1038/s41563-019-0346-z

    CrossRef Google Scholar

    [22]
    Liu X, Chiu C L, Lee J Y, Farahi G, Watanabe K, Taniguchi T, Vishwanath A, and Yazdani A 2021 Nat. Commun. 12 2732 doi: 10.1038/s41467-021-23031-0

    CrossRef Google Scholar

    [23]
    Brihuega I, Mallet P, Gonzalez-Herrero H, De Trambly L G, Ugeda M M, Magaud L, Gomez-Rodriguez J M, Yndurain F, and Veuillen J Y 2012 Phys. Rev. Lett. 109 196802 doi: 10.1103/PhysRevLett.109.196802

    CrossRef Google Scholar

    [24]
    Kresse G and Furthmuller J 1996 Comput. Mater. Sci. 6 15 doi: 10.1016/0927-02569600008-0

    CrossRef Google Scholar

    [25]
    Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 doi: 10.1103/PhysRevB.54.11169

    CrossRef Google Scholar

    [26]
    Blochl P E 1994 Phys. Rev. B 50 17953 doi: 10.1103/PhysRevB.50.17953

    CrossRef Google Scholar

    [27]
    Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 doi: 10.1103/PhysRevLett.77.3865

    CrossRef Google Scholar

    [28]
    Grimme S, Antony J, Ehrlich S, and Krieg H 2010 J. Chem. Phys. 132 154104 doi: 10.1063/1.3382344

    CrossRef Google Scholar

    [29]
    Shi H, Zhan Z, Qi Z, Huang K, Veen E V, Silva-Guillen J A, Zhang R, Li P, Xie K, Ji H, Katsnelson M I, Yuan S, Qin S, and Zhang Z 2020 Nat. Commun. 11 371 doi: 10.1038/s41467-019-14207-w

    CrossRef Google Scholar

    [30]
    San-Jose P and Prada E 2013 Phys. Rev. B 88 121408 doi: 10.1103/PhysRevB.88.121408

    CrossRef Google Scholar

    [31]
    Zhang F, Macdonald A H, and Mele E J 2013 Proc. Natl. Acad. Sci. USA 110 10546 doi: 10.1073/pnas.1308853110

    CrossRef Google Scholar

    [32]
    Gui G, Li J, and Zhong J 2008 Phys. Rev. B 78 075435 doi: 10.1103/PhysRevB.78.075435

    CrossRef Google Scholar

  • Related Articles

    [1]Cheng Shen, Jianghua Ying, Le Liu, Jianpeng Liu, Na Li, Shuopei Wang, Jian Tang, Yanchong Zhao, Yanbang Chu, Kenji Watanabe, Takashi Taniguchi, Rong Yang, Dongxia Shi, Fanming Qu, Li Lu, Wei Yang, Guangyu Zhang. Emergence of Chern Insulating States in Non-Magic Angle Twisted Bilayer Graphene [J]. Chin. Phys. Lett., 2021, 38(4): 047301. doi: 10.1088/0256-307X/38/4/047301
    [2]WANG Guo-Biao, XIONG Huan, LIN You-Xi, FANG Zhi-Lai, KANG Jun-Yong, DUAN Yu, SHEN Wen-Zhong. Green Emission from a Strain-Modulated InGaN Active Layer [J]. Chin. Phys. Lett., 2012, 29(6): 068101. doi: 10.1088/0256-307X/29/6/068101
    [3]WANG Tao, GUO Qing, AO Zhi-Min, LIU Yan, WANG Wen-Bo, SHENG Kuang, YU Bin. The Tunable Bandgap of AB-Stacked Bilayer Graphene on SiO2 with H2O Molecule Adsorption [J]. Chin. Phys. Lett., 2011, 28(11): 117302. doi: 10.1088/0256-307X/28/11/117302
    [4]OUYANG Fang-Ping, CHEN Li-Jian, XIAO Jin, ZHANG Hua. Electronic Properties of Bilayer Zigzag Graphene Nanoribbons: First Principles Study [J]. Chin. Phys. Lett., 2011, 28(4): 047304. doi: 10.1088/0256-307X/28/4/047304
    [5]WANG Zhen, WANG He-Ping, WANG Zhi-Xi, FEI Shao-Ming. Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices [J]. Chin. Phys. Lett., 2011, 28(2): 020302. doi: 10.1088/0256-307X/28/2/020302
    [6]LI Zhan-Guo, LIU Guo-Jun, LI Lin, FENG Ming, LI Mei, LU Peng, ZOU Yong-Gang, LI Lian-He, GAO Xin. Strain-Engineered Low-Density InAs Bilayer Quantum Dots for Single Photon Emission [J]. Chin. Phys. Lett., 2010, 27(12): 126801. doi: 10.1088/0256-307X/27/12/126801
    [7]HUANG Yong-Gang, FAN Heng, WANG Xue-Hua. Exact Calculation of Local Density of States in Two-Dimensional Photonic Crystals [J]. Chin. Phys. Lett., 2010, 27(10): 104213. doi: 10.1088/0256-307X/27/10/104213
    [8]HAN Mei, ZHANG Yong, ZHENG Hong-Bo. Effect of Uniaxial Strain on Band Gap of Armchair-Edge Graphene Nanoribbons [J]. Chin. Phys. Lett., 2010, 27(3): 037302. doi: 10.1088/0256-307X/27/3/037302
    [9]SHI Li-Peng, XIONG Shi-Jie. Screening of Local Magnetic Moment by Electrons of Disordered Graphene [J]. Chin. Phys. Lett., 2009, 26(6): 067103. doi: 10.1088/0256-307X/26/6/067103
    [10]TIAN Ye, KONG Xiang-Yan, WANG Hui-Wu, ZHAO Shi-Ping, CHEN Geng-Hua, YANG Qian-Sheng, CAO Lie-Zhao. Current Density and Local Magnetic Field of Spontaneous Magnetization States in One-Dimensional Superconducting Corner Junction Arrays [J]. Chin. Phys. Lett., 2004, 21(7): 1344-1347.
  • Cited by

    Periodical cited type(8)

    1. Arcudia, J., Heine, T., Merino, G. Deciphering the stacking language of honeycomb bilayer materials. Matter, 2025, 8(3): 101987. DOI:10.1016/j.matt.2025.101987
    2. Hou, Z., Yuan, K., Jiang, H. Arrays of one-dimensional conducting channels in minimally twisted bilayer graphene. Physical Review B, 2024, 110(16): L161406. DOI:10.1103/PhysRevB.110.L161406
    3. Wang, R., Song, Z. Flat Band and η-Pairing States in a One-Dimensional Moiré Hubbard Model. Chinese Physics Letters, 2024, 41(4): 047101. DOI:10.1088/0256-307X/41/4/047101
    4. Chen, H., Xu, Y., Zhao, J.-S. et al. Effect of strain on structure and electronic properties of monolayer C4N4. Chinese Physics B, 2024, 33(5): 057302. DOI:10.1088/1674-1056/ad260c
    5. Hu, J., Zhu, S., Hu, Q. et al. Visualizing the Local Twist Angle Variation within and between Domains of Twisted Bilayer Graphene. Chinese Physics Letters, 2024, 41(3): 037401. DOI:10.1088/0256-307X/41/3/037401
    6. Shi, H.-C., Tang, B., Liu, C.-F. Effect of interlayer exchange coupling interaction on topological phase of a bilayer honeycomb Heisenberg ferromagnet | [双层蜂窝状海森伯铁磁体中层间交换耦合相互作用对拓扑相的影响]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(13): 137501. DOI:10.7498/aps.73.20240437
    7. Yang, X., Zhang, B. Heterostrain and temperature-tuned twist between graphene/h-BN bilayers. Scientific Reports, 2023, 13(1): 4364. DOI:10.1038/s41598-023-31233-3
    8. Chu, Y., Liu, L., Ji, Y. et al. Observation of quadratic magnetoresistance in twisted double bilayer graphene. Chinese Physics B, 2022, 31(10): 107201. DOI:10.1088/1674-1056/ac6866

    Other cited types(0)

Catalog

    Article views (695) PDF downloads (570) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return