[1] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 | Quantum spin liquid states
[2] | Balents L 2010 Nature 464 199 | Spin liquids in frustrated magnets
[3] | Jiang K, Wu T, Yin J X et al. 2021 arXiv:2109.10809 [cond-mat.supr-con] | Kagome superconductors AV$_3$Sb$_5$ (A=K, Rb, Cs)
[4] | Yin J X, Zhang S S, Li H et al. 2018 Nature 562 91 | Giant and anisotropic many-body spin–orbit tunability in a strongly correlated kagome magnet
[5] | Ye L, Kang M, Liu J et al. 2018 Nature 555 638 | Massive Dirac fermions in a ferromagnetic kagome metal
[6] | Liu E, Sun Y, Kumar N et al. 2018 Nat. Phys. 14 1125 | Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal
[7] | Liu D F, Liang A J, Liu E K et al. 2019 Science 365 1282 | Magnetic Weyl semimetal phase in a Kagomé crystal
[8] | Morali N, Batabyal R, Nag P K, Liu E, Xu Q, Sun Y, Yan B, Felser C, Avraham N, and Beidenkopf H 2019 Science 365 1286 | Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co 3 Sn 2 S 2
[9] | Ortiz B R, Teicher S M L, Hu Y et al. 2020 Phys. Rev. Lett. 125 247002 | : A Topological Kagome Metal with a Superconducting Ground State
[10] | Ortiz B R, Gomes L C, Morey J R et al. 2019 Phys. Rev. Mater. 3 094407 | New kagome prototype materials: discovery of , and
[11] | Ortiz B R, Sarte P M, Kenney E M, Graf M J, Teicher S M L, Seshadri R, and Wilson S D 2021 Phys. Rev. Mater. 5 034801 | Superconductivity in the kagome metal
[12] | Yin Q, Tu Z, Gong C, Fu Y, Yan S, and Lei H 2021 Chin. Phys. Lett. 38 037403 | Superconductivity and Normal-State Properties of Kagome Metal RbV 3 Sb 5 Single Crystals
[13] | Mielke C, Das D, Yin J X, Liu H, Gupta R, Jiang Y X, Medarde M, Wu X, Lei H C, Chang J, Dai P, Si Q, Miao H, Thomale R, Neupert T, Shi Y, Khasanov R, Hasan M Z, Luetkens H, and Guguchia Z 2022 Nature 602 245 | Time-reversal symmetry-breaking charge order in a kagome superconductor
[14] | Yu L, Wang C, Zhang Y et al. 2021 arXiv:2107.10714 [cond-mat.supr-con] | Evidence of a hidden flux phase in the topological kagome metal CsV$_3$Sb$_5$
[15] | Chen H, Yang H, Hu B et al. 2021 Nature 599 222 | Roton pair density wave in a strong-coupling kagome superconductor
[16] | Nie L, Sun K, Ma W, Song D, Zheng L, Liang Z, Wu P, Yu F, Li J, Shan M, Zhao D, Li S, Kang B, Wu Z, Zhou Y, Liu K, Xiang Z, Ying J, Wang Z, Wu T, and Chen X 2022 Nature (in press) | Charge-density-wave-driven electronic nematicity in a kagome superconductor
[17] | Mu C, Yin Q, Tu Z, Gong C, Lei H, Li Z, and Luo J 2021 Chin. Phys. Lett. 38 077402 | S-Wave Superconductivity in Kagome Metal CsV 3 Sb 5 Revealed by 121/123 Sb NQR and 51 V NMR Measurements
[18] | Ni S, Ma S, Zhang Y et al. 2021 Chin. Phys. Lett. 38 057403 | Anisotropic Superconducting Properties of Kagome Metal CsV 3 Sb 5
[19] | Chen X, Zhan X, Wang X, Deng J, Liu X B, Chen X, Guo J G, and Chen X 2021 Chin. Phys. Lett. 38 057402 | Highly Robust Reentrant Superconductivity in CsV 3 Sb 5 under Pressure
[20] | Atomly https://atomly.net/ |
[21] | Kohn W and Sham L J 1965 Phys. Rev. 140 A1133 | Self-Consistent Equations Including Exchange and Correlation Effects
[22] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[23] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[24] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[25] | Kresse G and Joubert D 1999 Phys. Rev. B 59 1758 | From ultrasoft pseudopotentials to the projector augmented-wave method
[26] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[27] | Ong S P, Wang L, Kang B, and Ceder G 2008 Chem. Mater. 20 1798 | Li−Fe−P−O 2 Phase Diagram from First Principles Calculations
[28] | Ong S P, Richards W D, Jain A, Hautier G, Kocher M, Cholia S, Gunter D, Chevrier V L, Persson K A, and Ceder G 2013 Comput. Mater. Sci. 68 314 | Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
[29] | Liu M, Rong Z, Malik R, Canepa P, Jain A, Ceder G, and Persson K A 2015 Energy & Environ. Sci. 8 964 | Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations
[30] | Ong S P, Jain A, Hautier G, Kang B, and Ceder G 2010 Electrochem. Commun. 12 427 | Thermal stabilities of delithiated olivine MPO4 (M=Fe, Mn) cathodes investigated using first principles calculations
[31] | Sun W, Dacek S T, Ong S P, Hautier G, Jain A, Richards W D, Gamst A C, Persson K A, and Ceder G 2016 Sci. Adv. 2 e1600225 | The thermodynamic scale of inorganic crystalline metastability
[32] | Barber C B, Dobkin D P, and Huhdanpaa H 1996 ACM Trans. Math. Software 22 469 | The quickhull algorithm for convex hulls
[33] | Villain J, Bidaux R, Carton J P, and Conte R 1980 J. Phys. France 41 1263 | Order as an effect of disorder
[34] | Ran Y, Hermele M, Lee P A, and Wen X G 2007 Phys. Rev. Lett. 98 117205 | Projected-Wave-Function Study of the Spin- Heisenberg Model on the Kagomé Lattice
[35] | ICSD https://icsd.products.fiz-karlsruhe.de/ |
[36] | Jain A, Ong S P, Hautier G, Chen W, Richards W D, Dacek S, Cholia S, Gunter D, Skinner D, Ceder G, and Persson K A 2013 APL Mater. 1 11002 | Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
[37] | Yang H, Zhang Y, Huang Z et al. 2021 arXiv:2110.11228 [cond-mat.supr-con] | Doping and two distinct phases in strong-coupling kagome superconductors
[38] | Oey Y M, Ortiz B R, Kaboudvand F et al. 2021 arXiv:2110.10912 [cond-mat.supr-con] | Fermi level tuning and double-dome superconductivity in the kagome metals CsV$_3$Sb$_{5-x}$Sn$_x$
[39] | Shi M, Yu F, Yang Y, Meng F et al. 2021 arXiv:2110.09782 [cond-mat.supr-con] | A new class of bilayer kagome lattice compounds with Dirac nodal lines and pressure-induced superconductivity
[40] | Yin Q, Tu Z, Gong C, Tian S, and Lei H 2021 Chin. Phys. Lett. 38 127401 | Structures and physical properties of v-based kagome metals csv 6 sb 6 and csv 8 sb 12 *
[41] | Yang Y, Fan W, Zhang Q et al. 2021 Chin. Phys. Lett. 38 127102 | Discovery of Two Families of Vsb-Based Compounds with V-Kagome Lattice