[1] | Kuhnke K, Grosse C, Merino P, and Kern K 2017 Chem. Rev. 117 5174 | Atomic-Scale Imaging and Spectroscopy of Electroluminescence at Molecular Interfaces
[2] | Schultz J F, Li S, Jiang S, and Jiang N 2020 J. Phys.: Condens. Matter 32 463001 | Optical scanning tunneling microscopy based chemical imaging and spectroscopy
[3] | Berndt R, Gaisch R, Schneider W D, Gimzewski J K, Reihl B, Schlittler R R, and Tschudy M 1995 Phys. Rev. Lett. 74 102 | Atomic Resolution in Photon Emission Induced by a Scanning Tunneling Microscope
[4] | Uehara Y, Fujita T, and Ushioda S 1999 Phys. Rev. Lett. 83 2445 | Scanning Tunneling Microscope Light Emission Spectra of with Atomic Spatial Resolution
[5] | Renaud P and Alvarado S F 1991 Phys. Rev. B 44 6340 | Mapping quantum-well energy profiles of III-V heterostructures by scanning-tunneling-microscope-excited luminescence
[6] | Berndt R and Gimzewski J K 1992 Phys. Rev. B 45 14095 | Injection luminescence from CdS(112¯0) studied with scanning tunneling microscopy
[7] | Downes A and Welland M E 1998 Phys. Rev. Lett. 81 1857 | Photon Emission from - Induced by Scanning Tunneling Microscopy: Atomic Scale and Material Contrast
[8] | Thirstrup C, Sakurai M, Stokbro K, and Aono M 1999 Phys. Rev. Lett. 82 1241 | Visible Light Emission from Atomic Scale Patterns Fabricated by the Scanning Tunneling Microscope
[9] | Yokoyama T and Takiguchi Y 2001 Surf. Sci. 482–485 1163 | Scanning tunneling microscope induced light emission from GaAs(110) surfaces
[10] | Hoshino M and Yamamoto N 2002 MRS Online Proc. Library 738 723 | STM Light Emission from p-type GaAs (110) surface
[11] | Fujita D, Onishi K, and Niori N 2004 Nanotechnology 15 S355 | Light emission induced by tunnelling electrons from a p-type GaAs(110) surface observed at near-field by a conductive optical fibre probe
[12] | Baffou G, Mayne A J, Comtet G, and Dujardin G 2008 Phys. Rev. B 77 165320 | State selective electron transport through electronic surface states of
[13] | Reinhardt M, Schull G, Ebert P, and Berndt R 2010 Appl. Phys. Lett. 96 152107 | Atomic resolution in tunneling induced light emission from GaAs(110)
[14] | Imada H, Miwa K, Jung J, Shimizu T K, Yamamoto N, and Kim Y 2015 Nanotechnology 26 365402 | Atomic-scale luminescence measurement and theoretical analysis unveiling electron energy dissipation at a p -type GaAs(110) surface
[15] | Qiu X H, Nazin G V, and Ho W 2003 Science 299 542 | Vibrationally Resolved Fluorescence Excited with Submolecular Precision
[16] | Dong Z C, Guo X L, Trifonov A S, Dorozhkin P S, Miki K, Kimura K, Yokoyama S, and Mashiko S 2004 Phys. Rev. Lett. 92 086801 | Vibrationally Resolved Fluorescence from Organic Molecules near Metal Surfaces in a Scanning Tunneling Microscope
[17] | Wu S W, Nazin G V, and Ho W 2008 Phys. Rev. B 77 205430 | Intramolecular photon emission from a single molecule in a scanning tunneling microscope
[18] | Dong Z C, Zhang X L, Gao H Y, Luo Y, Zhang C, Chen L G, Zhang R, Tao X, Zhang Y, Yang J L, and Hou J G 2010 Nat. Photon. 4 50 | Generation of molecular hot electroluminescence by resonant nanocavity plasmons
[19] | Chen C, Chu P, Bobisch C A, Mills D L, and Ho W 2010 Phys. Rev. Lett. 105 217402 | Viewing the Interior of a Single Molecule: Vibronically Resolved Photon Imaging at Submolecular Resolution
[20] | Imada H, Miwa K, Imai-Imada M, Kawahara S, Kimura K, and Kim Y 2016 Nature 538 364 | Real-space investigation of energy transfer in heterogeneous molecular dimers
[21] | Zhang Y, Luo Y, Zhang Y, Yu Y J, Kuang Y M, Zhang L, Meng Q S, Luo Y, Yang J L, Dong Z C, and Hou J G 2016 Nature 531 623 | Visualizing coherent intermolecular dipole–dipole coupling in real space
[22] | Doppagne B, Chong M C, Bulou H, Boeglin A, Scheurer F, and Schull G 2018 Science 361 251 | Electrofluorochromism at the single-molecule level
[23] | Kimura K, Miwa K, Imada H, Imai-Imada M, Kawahara S, Takeya J, Kawai M, Galperin M, and Kim Y 2019 Nature 570 210 | Selective triplet exciton formation in a single molecule
[24] | Miao J and Wang C 2021 Nano Res. 14 1878 | Avalanche photodetectors based on two-dimensional layered materials
[25] | Bulgarini G, E R M, Hocevar M, P A M B E, Kouwenhoven L P, and Zwiller V 2012 Nat. Photon. 6 455 | Avalanche amplification of a single exciton in a semiconductor nanowire
[26] | Zhang S, Huang D, and Wu S 2016 Rev. Sci. Instrum. 87 063701 | A cryogen-free low temperature scanning tunneling microscope capable of inelastic electron tunneling spectroscopy
[27] | Feenstra R M, Stroscio J A, Tersoff J, and Fein A P 1987 Phys. Rev. Lett. 58 1192 | Atom-selective imaging of the GaAs(110) surface
[28] | Sze S M and Ng K K 2006 Physics of Semiconductor Devices (Hoboken, NJ: Wiley) |
[29] | Hauser J R 1966 J. Appl. Phys. 37 507 | Threshold Energy for Avalanche Multiplication in Semiconductors
[30] | Alig R C, Bloom S, and Struck C W 1980 Phys. Rev. B 22 5565 | Scattering by ionization and phonon emission in semiconductors
[31] | Nakwaski W 1995 Physica B 210 1 | Effective masses of electrons and heavy holes in GaAs, InAs, A1As and their ternary compounds
[32] | Nichele F, Pal A N, Winkler R, Gerl C, Wegscheider W, Ihn T, and Ensslin K 2014 Phys. Rev. B 89 081306 | Spin-orbit splitting and effective masses in -type GaAs two-dimensional hole gases
[33] | Pommier D, Bretel R, López L E P, Fabre F, Mayne A, Boer-Duchemin E, Dujardin G, Schull G, Berciaud S, and Le M E 2019 Phys. Rev. Lett. 123 027402 | Scanning Tunneling Microscope-Induced Excitonic Luminescence of a Two-Dimensional Semiconductor
[34] | Schuler B, Cochrane K A, Kastl C, Barnard E S, Wong E, Borys N J, Schwartzberg A M, Ogletree D F, Abajo F J G D, and Weber-Bargioni A 2020 Sci. Adv. 6 eabb5988 | Electrically driven photon emission from individual atomic defects in monolayer WS 2
[35] | Wilson N P, Yao W, Shan J, and Xu X 2021 Nature 599 383 | Excitons and emergent quantum phenomena in stacked 2D semiconductors