[1] | Mostafazadeh A 2002 J. Math. Phys. 43 205 | Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
[2] | Jones H F 2005 J. Phys. A 38 1741 | On pseudo-Hermitian Hamiltonians and their Hermitian counterparts
[3] | Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243 | Real Spectra in Non-Hermitian Hamiltonians Having Symmetry
[4] | Dorey P, Dunning C, and Tateo R 2001 J. Phys. A 34 5679 | Spectral equivalences, Bethe ansatz equations, and reality properties in 𝒫𝒯-symmetric quantum mechanics
[5] | Ruschhaupt A, Delgado F, and Muga J G 2005 J. Phys. A 38 L171 | Physical realization of -symmetric potential scattering in a planar slab waveguide
[6] | Jin L and Song Z 2009 Phys. Rev. A 80 052107 | Solutions of -symmetric tight-binding chain and its equivalent Hermitian counterpart
[7] | Joglekar Y N and Saxena A 2011 Phys. Rev. A 83 050101(R) | Robust -symmetric chain and properties of its Hermitian counterpart
[8] | Suchkov S V, Fotsa-Ngaffo F, Kenfack-Jiotsa A, Tikeng A D, Kofane T C, Kivshar Y S, and Sukhorukov A A 2016 New J. Phys. 18 065005 | Non-Hermitian trimers: PT-symmetry versus pseudo-Hermiticity
[9] | Chen P and Chong Y D 2017 Phys. Rev. A 95 062113 | Pseudo-Hermitian Hamiltonians generating waveguide mode evolution
[10] | Luo L, Luo J, Chu H, and Lai Y 2021 Adv. Photon. Res. 2 2000081 | Pseudo‐Hermitian Systems Constructed by Transformation Optics with Robustly Balanced Loss and Gain
[11] | Duan L, Wang Y Z, and Chen Q H 2020 Chin. Phys. Lett. 37 081101 | $PT$ Symmetry of a Square-Wave Modulated Two-Level System
[12] | Lei S, Bai D, Ren Z, and Lyu M 2021 Chin. Phys. Lett. 38 051101 | Finding Short-Range Parity-Time Phase-Transition Points with a Neural Network
[13] | Song Q, Dai S, Han D, Zhang Z Q, Chan C T, and Zi J 2021 Chin. Phys. Lett. 38 084203 | PT Symmetry Induced Rings of Lasing Threshold Modes Embedded with Discrete Bound States in the Continuum
[14] | El-Ganainy R, Makris K G, Christodoulides D N, and Musslimani Z H 2007 Opt. Lett. 32 2632 | Theory of coupled optical PT-symmetric structures
[15] | Makris K G, El-Ganainy R, Christodoulides D N, and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904 | Beam Dynamics in Symmetric Optical Lattices
[16] | Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M, and Kip D 2010 Nat. Phys. 6 192 | Observation of parity–time symmetry in optics
[17] | Mostafazadeh A and Batal A 2004 J. Phys. A 37 11645 | Physical aspects of pseudo-Hermitian and PT -symmetric quantum mechanics
[18] | Brody D C 2014 J. Phys. A 47 035305 | Biorthogonal quantum mechanics
[19] | Jin L and Song Z 2011 Phys. Rev. A 84 042116 | Hermitian dynamics in a class of pseudo-Hermitian networks
[20] | Kottos T 2010 Nat. Phys. 6 166 | Broken symmetry makes light work
[21] | Zheng M C, Christodoulides D N, Fleischmann R, and Kottos T 2010 Phys. Rev. A 82 010103(R) | optical lattices and universality in beam dynamics
[22] | Wang P, Jin L, Zhang G, and Song Z 2016 Phys. Rev. A 94 053834 | Wave emission and absorption at spectral singularities
[23] | Ge L 2018 Photon. Res. 6 A10 | Non-Hermitian lattices with a flat band and polynomial power increase [Invited]
[24] | Xiao L, Wang K, Zhan X, Bian Z, Kawabata K, Ueda M, Yi W, and Xue P 2019 Phys. Rev. Lett. 123 230401 | Observation of Critical Phenomena in Parity-Time-Symmetric Quantum Dynamics
[25] | Peng B, Özdemir S K, Lei F, Gianfreda F M M, Long G L, Fan S, Nori F, Bender C M, and Yang L 2014 Nat. Phys. 10 394 | Parity–time-symmetric whispering-gallery microcavities
[26] | Ding K, Ma G, Xiao M, Zhang Z Q, and Chan C T 2016 Phys. Rev. X 6 021007 | Emergence, Coalescence, and Topological Properties of Multiple Exceptional Points and Their Experimental Realization
[27] | Bian Z, Xiao L, Wang K, Zhan X, Onanga F A, Ruzicka F, Yi W, Joglekar Y N, and Xue P 2020 Phys. Rev. Res. 2 022039(R) | Conserved quantities in parity-time symmetric systems
[28] | Liu W, Wu Y, Duan C K, Rong X, and Du J 2021 Phys. Rev. Lett. 126 170506 | Dynamically Encircling an Exceptional Point in a Real Quantum System
[29] | Ashida Y, Gong Z, and Ueda M 2020 Adv. Phys. 69 249 | Non-Hermitian physics
[30] | Moiseyev N 2011 Non-Hermitian Quantum Mechanics (Cambridge: Cambridge University Press) |
[31] | Konotop V V, Yang J, and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002 | Nonlinear waves in -symmetric systems
[32] | Suchkov S V, Sukhorukov A A, Huang J, Dmitriev S V, Lee C, and Kivshar Y S 2016 Laser & Photon. Rev. 10 177 | Nonlinear switching and solitons in PT‐symmetric photonic systems
[33] | Feng L, El-Ganainy R, and Ge L 2017 Nat. Photon. 11 752 | Non-Hermitian photonics based on parity–time symmetry
[34] | Longhi S 2017 Europhys. Lett. 120 64001 | Parity-time symmetry meets photonics: A new twist in non-Hermitian optics
[35] | El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11 | Non-Hermitian physics and PT symmetry
[36] | Miri M A and Alù A 2019 Science 363 eaar7709 | Exceptional points in optics and photonics
[37] | Özdemir S K, Rotter S, Nori F, and Yang L 2019 Nat. Mater. 18 783 | Parity–time symmetry and exceptional points in photonics
[38] | Gupta S K, Zou Y, Zhu X Y, Lu M H, Zhang L J, Liu X P, and Chen Y F 2019 Adv. Mater. 32 1903639 | Parity‐Time Symmetry in Non‐Hermitian Complex Optical Media
[39] | Wiersig J 2014 Phys. Rev. Lett. 112 203901 | Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection
[40] | Hodaei H, Hassan A U, Wittek S, Garcia-Gracia H, El-Ganainy R, Christodoulides D N, and Khajavikhan M 2017 Nature 548 187 | Enhanced sensitivity at higher-order exceptional points
| Chen W, Ozdemir S K, Zhao G, Wiersig J, and Yang L 2017 Nature 548 192 | Exceptional points enhance sensing in an optical microcavity
[41] | Lau H K and Clerk A A 2018 Nat. Commun. 9 4320 | Fundamental limits and non-reciprocal approaches in non-Hermitian quantum sensing
[42] | Lai Y H, Lu Y K, Suh M G, Yuan Z, and Vahala K 2019 Nature 576 65 | Observation of the exceptional-point-enhanced Sagnac effect
| Hokmabadi M P, Schumer A, Christodoulides D N, and Khajavikhan M 2019 Nature 576 70 | Non-Hermitian ring laser gyroscopes with enhanced Sagnac sensitivity
[43] | Chu Y, Liu Y, Liu H, and Cai J 2020 Phys. Rev. Lett. 124 020501 | Quantum Sensing with a Single-Qubit Pseudo-Hermitian System
[44] | Xu H, Mason D, Jiang L, and Harris J G E 2016 Nature 537 80 | Topological energy transfer in an optomechanical system with exceptional points
[45] | Assawaworrarit S, Yu X, and Fan S 2017 Nature 546 387 | Robust wireless power transfer using a nonlinear parity–time-symmetric circuit
[46] | Feng L, Wong Z J, Ma R M, Wang Y, and Zhang X 2014 Science 346 972 | Single-mode laser by parity-time symmetry breaking
| Hodaei H, Miri M A, Heinrich M, Christodoulides D N, and Khajavikhan M 2014 Science 346 975 | Parity-time–symmetric microring lasers
[47] | Harari G, Bandres M A, Lumer Y, Rechtsman M C, Chong Y D, Khajavikhan M, Christodoulides D N, and Segev M 2018 Science 359 eaar4003 | Topological insulator laser: Theory
| Bandres M A, Wittek S, Harari G, Parto M, Ren J, Segev M, Christodoulides D, and Khajavikhan M 2018 Science 359 eaar4005 | Topological insulator laser: Experiments
[48] | Chong Y D, Ge L, Cao H, and Stone A D 2010 Phys. Rev. Lett. 105 053901 | Coherent Perfect Absorbers: Time-Reversed Lasers
[49] | Longhi S 2010 Phys. Rev. A 82 031801(R) | -symmetric laser absorber
[50] | Wan W, Chong Y, Ge L, Noh H, Stone A D, and Cao H 2011 Science 331 889 | Time-Reversed Lasing and Interferometric Control of Absorption
[51] | Sun Y, Tan W, Li H Q, Li J, and Chen H 2014 Phys. Rev. Lett. 112 143903 | Experimental Demonstration of a Coherent Perfect Absorber with PT Phase Transition
[52] | Li H, Suwunnarat S, Fleischmann R, Schanz H, and Kottos T 2017 Phys. Rev. Lett. 118 044101 | Random Matrix Theory Approach to Chaotic Coherent Perfect Absorbers
[53] | Jeffers J 2019 Phys. Rev. Lett. 123 143602 | Nonlocal Coherent Perfect Absorption
[54] | Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H, and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901 | Unidirectional Invisibility Induced by -Symmetric Periodic Structures
[55] | Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N, and Peschel U 2012 Nature 488 167 | Parity–time synthetic photonic lattices
[56] | Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R, Chen Y F, and Scherer A 2013 Nat. Mater. 12 108 | Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies
[57] | Zhu X, Ramezani H, Shi C, Zhu J, and Zhang X 2014 Phys. Rev. X 4 031042 | -Symmetric Acoustics
[58] | Wu J H, Artoni M, Rocca G C L, and Degeneracies N H 2014 Phys. Rev. Lett. 113 123004 | Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices
[59] | Sounas D L, Fleury R, and Alù A 2015 Phys. Rev. Appl. 4 014005 | Unidirectional Cloaking Based on Metasurfaces with Balanced Loss and Gain
[60] | Makris K G, Kresic I, Brandstötter A, and Rotter S 2020 Optica 7 619 | Scattering-free channels of invisibility across non-Hermitian media
[61] | Longhi S 2015 Opt. Lett. 40 1278 | Non-reciprocal transmission in photonic lattices based on unidirectional coherent perfect absorption
[62] | Sweeney W R, Hsu C W, Rotter S, and Stone A D 2019 Phys. Rev. Lett. 122 093901 | Perfectly Absorbing Exceptional Points and Chiral Absorbers
[63] | Li C, Jin L, and Song Z 2017 Phys. Rev. A 95 022125 | Non-Hermitian interferometer: Unidirectional amplification without distortion
[64] | Koutserimpas T T and Fleury R 2018 Phys. Rev. Lett. 120 087401 | Nonreciprocal Gain in Non-Hermitian Time-Floquet Systems
[65] | Mostafazadeh A 2009 Phys. Rev. Lett. 102 220402 | Spectral Singularities of Complex Scattering Potentials and Infinite Reflection and Transmission Coefficients at Real Energies
[66] | Ramezani H, Li H K, Wang Y, and Zhang X 2014 Phys. Rev. Lett. 113 263905 | Unidirectional Spectral Singularities
[67] | Jin L and Song Z 2018 Phys. Rev. Lett. 121 073901 | Incident Direction Independent Wave Propagation and Unidirectional Lasing
[68] | Ruschhaupt A, Dowdall T, Simón M A, and Muga J G 2017 Europhys. Lett. 120 20001 | Asymmetric scattering by non-Hermitian potentials
[69] | Alexandre J, Millington P, and Seynaeve D 2017 Phys. Rev. D 96 065027 | Symmetries and conservation laws in non-Hermitian field theories
[70] | Rivero J D H and Ge L 2020 Phys. Rev. Lett. 125 083902 | Pseudochirality: A Manifestation of Noether’s Theorem in Non-Hermitian Systems
[71] | Ge L, Chong Y D, and Stone A D 2012 Phys. Rev. A 85 023802 | Conservation relations and anisotropic transmission resonances in one-dimensional -symmetric photonic heterostructures
[72] | Ahmed Z 2013 Phys. Lett. A 377 957 | Reciprocity and unitarity in scattering from a non-Hermitian complex PT-symmetric potential
[73] | Mostafazadeh A 2014 J. Phys. A 47 505303 | Generalized unitarity and reciprocity relations for $PT$-symmetric scattering potentials
[74] | Jin L 2018 Phys. Rev. A 98 022117 | Scattering properties of a parity-time-antisymmetric non-Hermitian system
[75] | Jin L and Song Z 2012 Phys. Rev. A 85 012111 | Hermitian scattering behavior for a non-Hermitian scattering center
[76] | Muga J G, Palao J P, Navarro B, and Egusquiza I L 2004 Phys. Rep. 395 357 | Complex absorbing potentials
[77] | Cannata F, Dedonder J P, and Ventura A 2007 Ann. Phys. 322 397 | Scattering in PT-symmetric quantum mechanics
[78] | Jones H F 2007 Phys. Rev. D 76 125003 | Scattering from localized non-Hermitian potentials
[79] | Znojil M 2008 Phys. Rev. D 78 025026 | Scattering theory with localized non-Hermiticities
[80] | Ambichl P, Makris K G, Ge L, Chong Y, Stone A D, and Rotter S 2013 Phys. Rev. X 3 041030 | Breaking of Symmetry in Bounded and Unbounded Scattering Systems
[81] | Schomerus H 2013 Philos. Trans. R. Soc. A 371 20120194 | From scattering theory to complex wave dynamics in non-Hermitian PT -symmetric resonators
[82] | Basiri A, Vitebskiy I, and Kottos T 2015 Phys. Rev. A 91 063843 | Light scattering in pseudopassive media with uniformly balanced gain and loss
[83] | Ge L, Makris K G, Christodoulides D N, and Feng L 2015 Phys. Rev. A 92 062135 | Scattering in and multimode waveguides: Generalized conservation laws and spontaneous symmetry breaking beyond one dimension
[84] | Jin L, Zhang X Z, Zhang G, and Song Z 2016 Sci. Rep. 6 20976 | Reciprocal and unidirectional scattering of parity-time symmetric structures
[85] | Aurégan Y and Pagneux V 2017 Phys. Rev. Lett. 118 174301 | -Symmetric Scattering in Flow Duct Acoustics
[86] | Zhao Z, Guo C, and Fan S 2019 Phys. Rev. A 99 033839 | Connection of temporal coupled-mode-theory formalisms for a resonant optical system and its time-reversal conjugate
[87] | Droulias S, Katsantonis I, Kafesaki M, Soukoulis C M, and Economou E N 2019 Phys. Rev. Lett. 122 213201 | Chiral Metamaterials with Symmetry and Beyond
[88] | Novitsky A, Lyakhov D, Michels D, Pavlov A A, Shalin A S, and Novitsky D V 2020 Phys. Rev. A 101 043834 | Unambiguous scattering matrix for non-Hermitian systems
[89] | Burke P C, Wiersig J, and Haque M 2020 Phys. Rev. A 102 012212 | Non-Hermitian scattering on a tight-binding lattice
[90] | Ghaemi-Dizicheh H and Schomerus H 2021 Phys. Rev. A 104 023515 | Compatibility of transport effects in non-Hermitian nonreciprocal systems
[91] | Tzortzakakis A F, Makris K G, Szameit A, and Economou E N 2021 Phys. Rev. Res. 3 013208 | Transport and spectral features in non-Hermitian open systems
[92] | Krasnok A, Baranov D, Li H, Miri M A, Monticone F, and Alù A 2019 Adv. Opt. Photon. 11 892 | Anomalies in light scattering
[93] | Simón M A, Buendía A, Kiely A, Mostafazadeh A, and Muga J G 2019 Phys. Rev. A 99 052110 | -matrix pole symmetries for non-Hermitian scattering Hamiltonians
[94] | Ruschhaupt A, Kiely A, Simón M A, and Muga J G 2020 Phys. Rev. A 102 053705 | Quantum-optical implementation of non-Hermitian potentials for asymmetric scattering
[95] | Schomerus H and Wiersig J 2014 Phys. Rev. A 90 053819 | Non-Hermitian-transport effects in coupled-resonator optical waveguides
[96] | Fleury R, Sounas D, and Alù A 2015 Nat. Commun. 6 5905 | An invisible acoustic sensor based on parity-time symmetry
[97] | Gao H, Xue H, Wang Q, Gu Z, Liu T, Zhu J, and Zhang B 2020 Phys. Rev. B 101 180303(R) | Observation of topological edge states induced solely by non-Hermiticity in an acoustic crystal
[98] | Gou W, Chen T, Xie D, Xiao T, Deng T S, Gadway B, Yi W, and Yan B 2020 Phys. Rev. Lett. 124 070402 | Tunable Nonreciprocal Quantum Transport through a Dissipative Aharonov-Bohm Ring in Ultracold Atoms
[99] | Schindler J, Li A, Zheng M C, Ellis F M, and Kottos T 2011 Phys. Rev. A 84 040101(R) | Experimental study of active LRC circuits with symmetries
[100] | Cochran Z A, Saxena A, and Joglekar Y N 2021 Phys. Rev. Res. 3 013135 | Parity-time symmetric systems with memory
[101] | Kawabata K, Shiozaki K, Ueda M, and Sato M 2019 Phys. Rev. X 9 041015 | Symmetry and Topology in Non-Hermitian Physics
[102] | Zhou H and Lee J Y 2019 Phys. Rev. B 99 235112 | Periodic table for topological bands with non-Hermitian symmetries
[103] | Jin L and Song Z 2021 Chin. Phys. Lett. 38 024202 | Symmetry-Protected Scattering in Non-Hermitian Linear Systems
[104] | For a rigorous proof, please see Eq. (12) in Ref.[103] and compare the scattering coefficients of the scattering centers $H$ and $H^{\rm T}$. Notice that the symbols $t_{\scriptscriptstyle{\rm L}}$, $t_{\scriptscriptstyle{\rm R}}$, $ r_{\scriptscriptstyle{\rm L}}$ and $r_{\scriptscriptstyle{\rm R}}$ in Ref.[103] are $s_{nm}$, $s_{mn}$, $s_{mm}$ and $s_{nn}$ of the scattering matrix with our current notations for any pair of ports $m$ and $n$. The fact $(A^T)^{-1}=(A^{-1})^T$ is also used in the proof for any square matrix $A$. |
[105] | From the off-diagonal term of $SS^{† }$, we obtain $r_{\scriptscriptstyle{\rm L}}=-t_{\scriptscriptstyle{\rm R}}r_{\scriptscriptstyle{\rm R}}^{\ast }/t_{\scriptscriptstyle{\rm L}}^{\ast }$. From the diagonal terms of $SS^{† }$, we obtain $1=r_{\scriptscriptstyle{\rm L}}r_{\scriptscriptstyle{\rm L}}^{\ast }+t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=\left( r_{\scriptscriptstyle{\rm R}}^{\ast }r_{\scriptscriptstyle{\rm R}}/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}+1\right) t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }=t_{\scriptscriptstyle{\rm R}}t_{\scriptscriptstyle{\rm R}}^{\ast }/t_{\scriptscriptstyle{\rm L}}^{\ast }t_{\scriptscriptstyle{\rm L}}$. |
[106] | Fleury R, Sounas D L, Sieck C F, Haberman M R, and Alù A 2014 Science 343 516 | Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator
[107] | Kippenberg T J, Spillane S M, and Vahala K J 2002 Opt. Lett. 27 1669 | Modal coupling in traveling-wave resonators
[108] | Kim W, Covaci L, and Marsiglio F 2006 Phys. Rev. B 74 205120 | Impurity scattering of wave packets on a lattice
[109] | Wu H C, Yang X M, Jin L, and Song Z 2020 Phys. Rev. B 102 161101(R) | Untying links through anti-parity-time-symmetric coupling
[110] | Xi M, Wang R, Lu J, and Jiang J H 2021 Chin. Phys. Lett. 38 088801 | Coulomb Thermoelectric Drag in Four-Terminal Mesoscopic Quantum Transport