[1] | Novoselov K S et al. 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[2] | Li X and Zhu H 2015 J. Materiomics 1 33 | Two-dimensional MoS2: Properties, preparation, and applications
[3] | Zhang G et al. 2019 Appl. Phys. Lett. 114 253102 | Optical and electrical properties of two-dimensional palladium diselenide
[4] | Gutiérrez H R et al. 2013 Nano Lett. 13 3447 | Extraordinary Room-Temperature Photoluminescence in Triangular WS 2 Monolayers
[5] | Massicotte M et al. 2018 Nat. Commun. 9 1633 | Dissociation of two-dimensional excitons in monolayer WSe2
[6] | Feng J et al. 2018 Nano Lett. 18 4493 | Electronic Structure and Enhanced Charge-Density Wave Order of Monolayer VSe 2
[7] | Brem S et al. 2020 Nanoscale 12 11088 | Hybridized intervalley moiré excitons and flat bands in twisted WSe 2 bilayers
[8] | Tran K et al. 2019 Nature 567 71 | Evidence for moiré excitons in van der Waals heterostructures
[9] | Scuri G et al. 2020 Phys. Rev. Lett. 124 217403 | Electrically Tunable Valley Dynamics in Twisted Bilayers
[10] | Ciarrocchi A et al. 2019 Nat. Photon. 13 131 | Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures
[11] | Dong X Y et al. 2019 J. Phys. Chem. Solids 134 1 | Interlayer exciton-polaron effect in transition metal dichalcogenides van der Waals heterostructures
[12] | Förg M et al. 2021 Nat. Commun. 12 1656 | Moiré excitons in MoSe2-WSe2 heterobilayers and heterotrilayers
[13] | Karni O et al. 2019 Phys. Rev. Lett. 123 247402 | Infrared Interlayer Exciton Emission in Heterostructures
[14] | Li A et al. 2020 Chin. Phys. Lett. 37 107101 | Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe 2 *
[15] | Chu Z et al. 2020 Phys. Rev. Lett. 125 186803 | Nanoscale Conductivity Imaging of Correlated Electronic States in Moiré Superlattices
[16] | Gall M et al. 2021 Nature 589 40 | Competing magnetic orders in a bilayer Hubbard model with ultracold atoms
[17] | Mahapatra P S et al. 2020 Phys. Rev. Lett. 125 226802 | Misorientation-Controlled Cross-Plane Thermoelectricity in Twisted Bilayer Graphene
[18] | Mahapatra P S et al. 2017 Nano Lett. 17 6822 | Seebeck Coefficient of a Single van der Waals Junction in Twisted Bilayer Graphene
[19] | Regan E C et al. 2020 Nature 579 359 | Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices
[20] | Zondiner U et al. 2020 Nature 582 203 | Cascade of phase transitions and Dirac revivals in magic-angle graphene
[21] | Bistritzer R and MacDonald A H 2011 Proc. Natl. Acad. Sci. USA 108 12233 | Moire bands in twisted double-layer graphene
[22] | Cao Y et al. 2018 Nature 556 80 | Correlated insulator behaviour at half-filling in magic-angle graphene superlattices
[23] | Codecido E et al. 2019 Sci. Adv. 5 eaaw9770 | Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle
[24] | Lu X et al. 2019 Nature 574 653 | Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene
[25] | Wu F and Sarma S D 2019 Phys. Rev. B 99 220507 | Identification of superconducting pairing symmetry in twisted bilayer graphene using in-plane magnetic field and strain
[26] | Lee D S et al. 2011 Phys. Rev. Lett. 107 216602 | Quantum Hall Effect in Twisted Bilayer Graphene
[27] | Zhu Z et al. 2020 Phys. Rev. Lett. 125 116404 | Twisted Trilayer Graphene: A Precisely Tunable Platform for Correlated Electrons
[28] | Lei C et al. 2021 Phys. Rev. B 104 035139 | Mirror symmetry breaking and lateral stacking shifts in twisted trilayer graphene
[29] | Carr S et al. 2020 Nano Lett. 20 3030 | Ultraheavy and Ultrarelativistic Dirac Quasiparticles in Sandwiched Graphenes
[30] | Park J M et al. 2021 Nature 590 249 | Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene
[31] | Mora C et al. 2019 Phys. Rev. Lett. 123 026402 | Flatbands and Perfect Metal in Trilayer Moiré Graphene
[32] | Xu S et al. 2021 Nat. Phys. 17 619 | Tunable van Hove singularities and correlated states in twisted monolayer–bilayer graphene
[33] | Yoo H et al. 2019 Nat. Mater. 18 448 | Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene
[34] | Lisi S et al. 2021 Nat. Phys. 17 189 | Observation of flat bands in twisted bilayer graphene
[35] | Cao Y et al. 2018 Nature 556 43 | Unconventional superconductivity in magic-angle graphene superlattices
[36] | Zuo W J et al. 2018 Phys. Rev. B 97 035440 | Scanning tunneling microscopy and spectroscopy of twisted trilayer graphene
[37] | Goerbig M O 2011 Rev. Mod. Phys. 83 1193 | Electronic properties of graphene in a strong magnetic field
[38] | Shallcross S et al. 2013 Phys. Rev. B 87 245403 | Emergent momentum scale, localization, and van Hove singularities in the graphene twist bilayer
[39] | Sboychakov A O et al. 2015 Phys. Rev. B 92 075402 | Electronic spectrum of twisted bilayer graphene
[40] | Li G et al. 2010 Nat. Phys. 6 109 | Observation of Van Hove singularities in twisted graphene layers
[41] | Catarina G et al. 2019 Handbook Graphene Set (Hoboken NJ: John Wiley & Sons Inc.) vol 3 chap 6 p 177 |
[42] | Mogera U and Kulkarni G U 2020 Carbon 156 470 | A new twist in graphene research: Twisted graphene
[43] | Nimbalkar A and Kim H 2020 Nano-Micro Lett. 12 126 | Opportunities and Challenges in Twisted Bilayer Graphene: A Review
[44] | Dos S J L et al. 2012 Phys. Rev. B 86 155449 | Continuum model of the twisted graphene bilayer
[45] | Shallcross S et al. 2008 Phys. Rev. Lett. 101 056803 | Quantum Interference at the Twist Boundary in Graphene
[46] | Yao W et al. 2018 Proc. Natl. Acad. Sci. USA 115 6928 | Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling
[47] | Kim K et al. 2017 Proc. Natl. Acad. Sci. USA 114 3364 | Tunable moiré bands and strong correlations in small-twist-angle bilayer graphene
[48] | Uchida K et al. 2014 Phys. Rev. B 90 155451 | Atomic corrugation and electron localization due to Moiré patterns in twisted bilayer graphenes
[49] | Zhang S et al. 2020 Sci. Adv. 6 eabc5555 | Abnormal conductivity in low-angle twisted bilayer graphene
[50] | Mele E J 2010 Phys. Rev. B 81 161405 | Commensuration and interlayer coherence in twisted bilayer graphene
[51] | Mele E J 2011 Phys. Rev. B 84 235439 | Band symmetries and singularities in twisted multilayer graphene
[52] | Scattering L D 2004 Molecular Light Scattering and Optical Activity 2nd edn (Cambridge: Cambridge University Press) |
[53] | Torsi L et al. 2008 Nat. Mater. 7 412 | A sensitivity-enhanced field-effect chiral sensor
[54] | Gohler B et al. 2011 Science 331 894 | Spin Selectivity in Electron Transmission Through Self-Assembled Monolayers of Double-Stranded DNA
[55] | Kim C J et al. 2016 Nat. Nanotechnol. 11 520 | Chiral atomically thin films
[56] | Matsuo K and Gekko K 2004 Carbohydr. Res. 339 591 | Vacuum-ultraviolet circular dichroism study of saccharides by synchrotron radiation spectrophotometry
[57] | Suárez M E et al. 2017 2D Mater. 4 035015 | Twisting dirac fermions: circular dichroism in bilayer graphene
[58] | Stauber T et al. 2018 Phys. Rev. Lett. 120 046801 | Chiral Response of Twisted Bilayer Graphene
[59] | Addison Z et al. 2019 Phys. Rev. B 100 125418 | Twist, slip, and circular dichroism in bilayer graphene
[60] | Yang F et al. 2020 Matter 3 1361 | Tunable Second Harmonic Generation in Twisted Bilayer Graphene
[61] | Malard L M et al. 2013 Phys. Rev. B 87 201401 | Observation of intense second harmonic generation from MoS atomic crystals
[62] | Ha S et al. 2021 Light: Sci. & Appl. 10 19 | Enhanced third-harmonic generation by manipulating the twist angle of bilayer graphene
[63] | Mao X R et al. 2021 Nat. Nanotechnol. 16 1099 | Magic-angle lasers in nanostructured moiré superlattice
[64] | Le S M et al. 2019 2D Mater. 7 011005 | Moiré patterns: a simple analytical model
[65] | Lu C C et al. 2013 ACS Nano 7 2587 | Twisting Bilayer Graphene Superlattices
[66] | Campos-Delgado J et al. 2013 Nano Res. 6 269 | Raman scattering study of the phonon dispersion in twisted bilayer graphene
[67] | Righi A et al. 2011 Phys. Rev. B 84 241409 | Graphene Moiré patterns observed by umklapp double-resonance Raman scattering
[68] | Carozo V et al. 2013 Phys. Rev. B 88 085401 | Resonance effects on the Raman spectra of graphene superlattices
[69] | Ni Z et al. 2008 Phys. Rev. B 77 235403 | Reduction of Fermi velocity in folded graphene observed by resonance Raman spectroscopy
[70] | Sato K et al. 2012 Phys. Rev. B 86 125414 | Zone folding effect in Raman -band intensity of twisted bilayer graphene
[71] | Havener R W et al. 2012 Nano Lett. 12 3162 | Angle-Resolved Raman Imaging of Interlayer Rotations and Interactions in Twisted Bilayer Graphene
[72] | dos Santos J M B L et al. 2007 Phys. Rev. Lett. 99 256802 | Graphene Bilayer with a Twist: Electronic Structure
[73] | de Trambly L G et al. 2010 Nano Lett. 10 804 | Localization of Dirac Electrons in Rotated Graphene Bilayers
[74] | Brihuega I et al. 2012 Phys. Rev. Lett. 109 196802 | Unraveling the Intrinsic and Robust Nature of van Hove Singularities in Twisted Bilayer Graphene by Scanning Tunneling Microscopy and Theoretical Analysis
[75] | Du J et al. 2021 Chin. Phys. Lett. 38 056301 | Fano Resonance Enabled Infrared Nano-Imaging of Local Strain in Bilayer Graphene
[76] | van Wijk M M et al. 2015 2D Mater. 2 034010 | Relaxation of moiré patterns for slightly misaligned identical lattices: graphene on graphite
[77] | Carr S et al. 2018 Phys. Rev. B 98 224102 | Relaxation and domain formation in incommensurate two-dimensional heterostructures
[78] | Zhou S et al. 2015 Phys. Rev. B 92 155438 | van der Waals bilayer energetics: Generalized stacking-fault energy of graphene, boron nitride, and graphene/boron nitride bilayers
[79] | Nam N N T and Koshino M 2017 Phys. Rev. B 96 075311 | Lattice relaxation and energy band modulation in twisted bilayer graphene
[80] | Gadelha A C et al. 2021 Nature 590 405 | Localization of lattice dynamics in low-angle twisted bilayer graphene
[81] | Liu Y W et al. 2020 Phys. Rev. Lett. 125 236102 | Tunable Lattice Reconstruction, Triangular Network of Chiral One-Dimensional States, and Bandwidth of Flat Bands in Magic Angle Twisted Bilayer Graphene
[82] | Andersen T I et al. 2021 Nat. Mater. 20 480 | Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers
[83] | Wong D et al. 2015 Phys. Rev. B 92 155409 | Local spectroscopy of moiré-induced electronic structure in gate-tunable twisted bilayer graphene
[84] | Bardeen J 1961 Phys. Rev. Lett. 6 57 | Tunnelling from a Many-Particle Point of View
[85] | McGilly L J et al. 2020 Nat. Nanotechnol. 15 580 | Visualization of moiré superlattices
[86] | Schmidt H et al. 2014 Nat. Commun. 5 5742 | Superlattice structures in twisted bilayers of folded graphene
[87] | Sunku S S et al. 2018 Science 362 1153 | Photonic crystals for nano-light in moiré graphene superlattices
[88] | Hesp N C H et al. 2021 Nat. Commun. 12 1640 | Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene
[89] | Yu Z et al. 2020 Small 16 1902844 | Understanding Interlayer Contact Conductance in Twisted Bilayer Graphene
[90] | Perebeinos V et al. 2012 Phys. Rev. Lett. 109 236604 | Phonon-Mediated Interlayer Conductance in Twisted Graphene Bilayers
[91] | Kim Y et al. 2013 Phys. Rev. Lett. 110 096602 | Breakdown of the Interlayer Coherence in Twisted Bilayer Graphene
[92] | Li H et al. 2018 Ultramicroscopy 193 90 | Interlayer electrical resistivity of rotated graphene layers studied by in-situ scanning electron microscopy
[93] | Ahn S J et al. 2018 Science 361 782 | Dirac electrons in a dodecagonal graphene quasicrystal
[94] | Moon P et al. 2019 Phys. Rev. B 99 165430 | Quasicrystalline electronic states in rotated twisted bilayer graphene
[95] | Yu G et al. 2020 Phys. Rev. B 102 045113 | Pressure and electric field dependence of quasicrystalline electronic states in twisted bilayer graphene
[96] | Yin J et al. 2016 Nat. Commun. 7 10699 | Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity
[97] | Koren E et al. 2016 Nat. Nanotechnol. 11 752 | Coherent commensurate electronic states at the interface between misoriented graphene layers
[98] | Utama M I B et al. 2021 Nat. Phys. 17 184 | Visualization of the flat electronic band in twisted bilayer graphene near the magic angle twist
[99] | Shen Y H et al. 2021 Chin. Phys. Lett. 38 037501 | Exotic Dielectric Behaviors Induced by Pseudo-Spin Texture in Magnetic Twisted Bilayer
[100] | Yu G et al. 2020 Phys. Rev. B 102 115123 | Electronic structure of twisted double bilayer graphene
[101] | Pal H K et al. 2019 Phys. Rev. Lett. 123 186402 | Emergent Geometric Frustration and Flat Band in Moiré Bilayer Graphene
[102] | Eliel G S N et al. 2018 Nat. Commun. 9 1221 | Intralayer and interlayer electron–phonon interactions in twisted graphene heterostructures
[103] | Alencar T V et al. 2018 J. Phys.: Condens. Matter 30 175302 | Twisted bilayer graphene photoluminescence emission peaks at van Hove singularities
[104] | Patel H et al. 2019 Nat. Commun. 10 1445 | Stacking angle-tunable photoluminescence from interlayer exciton states in twisted bilayer graphene
[105] | Ni Z et al. 2009 Phys. Rev. B 80 125404 | -band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding
[106] | Kim K et al. 2012 Phys. Rev. Lett. 108 246103 | Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure
[107] | Le H A and Do V N 2018 Phys. Rev. B 97 125136 | Electronic structure and optical properties of twisted bilayer graphene calculated via time evolution of states in real space
[108] | Havener R W et al. 2014 Nano Lett. 14 3353 | Van Hove Singularities and Excitonic Effects in the Optical Conductivity of Twisted Bilayer Graphene
[109] | Wen L et al. 2021 Chin. Phys. B 30 017303 | Optical conductivity of twisted bilayer graphene near the magic angle*
[110] | Yu K et al. 2019 Phys. Rev. B 99 241405 | Gate tunable optical absorption and band structure of twisted bilayer graphene
[111] | Ohta T et al. 2012 Phys. Rev. Lett. 109 186807 | Evidence for Interlayer Coupling and Moiré Periodic Potentials in Twisted Bilayer Graphene
[112] | Yan W et al. 2012 Phys. Rev. Lett. 109 126801 | Angle-Dependent van Hove Singularities in a Slightly Twisted Graphene Bilayer
[113] | Sunku S S et al. 2020 Nano Lett. 20 2958 | Nano-photocurrent Mapping of Local Electronic Structure in Twisted Bilayer Graphene
[114] | An X et al. 2013 Nano Lett. 13 909 | Tunable Graphene–Silicon Heterojunctions for Ultrasensitive Photodetection
[115] | Yan W et al. 2013 Nat. Commun. 4 2159 | Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer
[116] | Kerelsky A et al. 2019 Nature 572 95 | Maximized electron interactions at the magic angle in twisted bilayer graphene
[117] | de Laissardière G T et al. 2012 Phys. Rev. B 86 125413 | Numerical studies of confined states in rotated bilayers of graphene
[118] | Ren Y N et al. 2020 Chin. Phys. B 29 117303 | Twistronics in graphene-based van der Waals structures
[119] | Suárez M E et al. 2010 Phys. Rev. B 82 121407 | Flat bands in slightly twisted bilayer graphene: Tight-binding calculations
[120] | Moon P and Koshino M 2013 Phys. Rev. B 87 205404 | Optical absorption in twisted bilayer graphene
[121] | Tarnopolsky G et al. 2019 Phys. Rev. Lett. 122 106405 | Origin of Magic Angles in Twisted Bilayer Graphene
[122] | Zhang X et al. 2021 Chin. Phys. Lett. 38 077305 | Momentum Space Quantum Monte Carlo on Twisted Bilayer Graphene
[123] | Arora H S et al. 2020 Nature 583 379 | Superconductivity in metallic twisted bilayer graphene stabilized by WSe2
[124] | Liu C C et al. 2018 Phys. Rev. Lett. 121 217001 | Chiral Spin Density Wave and Superconductivity in the Magic-Angle-Twisted Bilayer Graphene
[125] | Zhang M et al. 2020 Chin. Phys. B 29 127102 | Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene*
[126] | Chen G et al. 2019 Nat. Phys. 15 237 | Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice
[127] | Saito Y et al. 2020 Nat. Phys. 16 926 | Independent superconductors and correlated insulators in twisted bilayer graphene
[128] | Bistritzer R and MacDonald A H 2011 Phys. Rev. B 84 035440 | Moiré butterflies in twisted bilayer graphene
[129] | Nuckolls K P et al. 2020 Nature 588 610 | Strongly correlated Chern insulators in magic-angle twisted bilayer graphene
[130] | Wang Z F et al. 2012 Nano Lett. 12 3833 | Fractal Landau-Level Spectra in Twisted Bilayer Graphene
[131] | Chen G et al. 2019 Nature 572 215 | Signatures of tunable superconductivity in a trilayer graphene moiré superlattice
[132] | Ge S et al. 2017 Phys. Rev. B 95 045303 | Interlayer transport through a graphene/rotated boron nitride/graphene heterostructure
[133] | Shen C et al. 2021 Chin. Phys. Lett. 38 047301 | Emergence of Chern Insulating States in Non-Magic Angle Twisted Bilayer Graphene
[134] | Andrei E Y and MacDonald A H 2020 Nat. Mater. 19 1265 | Graphene bilayers with a twist
[135] | Rozhkov A V et al. 2016 Phys. Rep. 648 1 | Electronic properties of graphene-based bilayer systems
[136] | Moon P and Koshino M 2012 Phys. Rev. B 85 195458 | Energy spectrum and quantum Hall effect in twisted bilayer graphene
[137] | Yao W et al. 2020 Chin. Phys. B 29 127304 | Progress on band structure engineering of twisted bilayer and two-dimensional moiré heterostructures*
[138] | Fei Z et al. 2012 Nature 487 82 | Gate-tuning of graphene plasmons revealed by infrared nano-imaging
[139] | Chen J et al. 2012 Nature 487 77 | Optical nano-imaging of gate-tunable graphene plasmons
[140] | Zhang Q et al. 2021 Nature 597 187 | Interface nano-optics with van der Waals polaritons
[141] | Hu F et al. 2017 Phys. Rev. Lett. 119 247402 | Real-Space Imaging of the Tailored Plasmons in Twisted Bilayer Graphene
[142] | Li P et al. 2018 Science 359 892 | Infrared hyperbolic metasurface based on nanostructured van der Waals materials
[143] | Gomez-Diaz J S et al. 2015 Phys. Rev. Lett. 114 233901 | Hyperbolic Plasmons and Topological Transitions Over Uniaxial Metasurfaces
[144] | Hu G et al. 2020 Nano Lett. 20 3217 | Moiré Hyperbolic Metasurfaces
[145] | Hu G et al. 2020 Nature 582 209 | Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers
[146] | Suárez M E et al. 2013 Phys. Rev. B 87 125414 | Electronic properties of twisted trilayer graphene
[147] | Qiao J B and He L 2014 Phys. Rev. B 90 075410 | In-plane chiral tunneling and out-of-plane valley-polarized quantum tunneling in twisted graphene trilayer
[148] | Correa J D et al. 2014 J. Mater. Sci. 49 642 | Optical absorption spectrum of rotated trilayer graphene
[149] | Amorim B and Castro E V 2018 arXiv:1807.11909 [cond-mat.mes-hall] | Electronic spectral properties of incommensurate twisted trilayer graphene
[150] | Cao Y et al. 2020 Nature 583 215 | Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene
[151] | Chebrolu N R et al. 2019 Phys. Rev. B 99 235417 | Flat bands in twisted double bilayer graphene
[152] | He M et al. 2021 Nat. Phys. 17 26 | Symmetry breaking in twisted double bilayer graphene
[153] | Liu X et al. 2020 Nature 583 221 | Tunable spin-polarized correlated states in twisted double bilayer graphene
[154] | Vela A et al. 2018 Phys. Rev. B 98 155135 | Electronic structure and optical properties of twisted multilayer graphene
[155] | Koshino M 2013 New J. Phys. 15 015010 | Stacking-dependent optical absorption in multilayer graphene
[156] | Zhou C et al. 2021 Chin. Phys. Lett. 38 057307 | Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film
[157] | Zhang X et al. 2021 Phys. Rev. Lett. 127 166802 | Correlated Insulating States and Transport Signature of Superconductivity in Twisted Trilayer Graphene Superlattices
[158] | Zhou H et al. 2021 Nature 598 434 | Superconductivity in rhombohedral trilayer graphene
[159] | Zhou H et al. 2021 Nature 598 429 | Half- and quarter-metals in rhombohedral trilayer graphene
[160] | Chatterjee S et al. 2021 arXiv:2109.00002 [cond-mat.supr-con] | Inter-valley coherent order and isospin fluctuation mediated superconductivity in rhombohedral trilayer graphene