[1] | Mailhiot C, Yang L H, and McMahan A K 1992 Phys. Rev. B 46 14419 | Polymeric nitrogen
[2] | Eremets M I, Gavriliuk A G, Trojan I A, Dzivenko D A, and Boehler R 2004 Nat. Mater. 3 558 | Single-bonded cubic form of nitrogen
[3] | Ma Y, Oganov A R, Li Z, Xie Y, and Kotakoski J 2009 Phys. Rev. Lett. 102 065501 | Novel High Pressure Structures of Polymeric Nitrogen
[4] | Pickard C J and Needs R J 2009 Phys. Rev. Lett. 102 125702 | High-Pressure Phases of Nitrogen
[5] | Wang X, Wang Y, Miao M, Zhong X, Lv J, Cui T, Li J, Chen L, Pickard C J, and Ma Y 2012 Phys. Rev. Lett. 109 175502 | Cagelike Diamondoid Nitrogen at High Pressures
[6] | Sun J, Martinez-Canales M, Klug D D, Pickard C J, and Needs R J 2013 Phys. Rev. Lett. 111 175502 | Stable All-Nitrogen Metallic Salt at Terapascal Pressures
[7] | Tomasino D, Kim M, Smith J, and Yoo C S 2014 Phys. Rev. Lett. 113 205502 | Pressure-Induced Symmetry-Lowering Transition in Dense Nitrogen to Layered Polymeric Nitrogen (LP-N) with Colossal Raman Intensity
[8] | Ji C, Adeleke A A, Yang L X, Wan B, Gou H Y, Yao Y S, Li B, Meng Y, Smith J S, Prakapenka V B, Liu W J, Shen G Y, Mao W L, and Mao H K 2020 Sci. Adv. 6 eaba9206 | Nitrogen in black phosphorus structure
[9] | Laniel D, Winkler B, Fedotenko T, Pakhomova A, Chariton S, Milman V, Prakapenka V, Dubrovinsky L, and Dubrovinskaia N 2020 Phys. Rev. Lett. 124 216001 | High-Pressure Polymeric Nitrogen Allotrope with the Black Phosphorus Structure
[10] | Eremets M I, Popov M Y, Trojan I A, Denisov V N, Boehler R, and Hemley R J 2004 J. Chem. Phys. 120 10618 | Polymerization of nitrogen in sodium azide
[11] | Christe K O 2007 Propell.Explos. Pyrotech. 32 194 | Recent Advances in the Chemistry of N5+, N5− and High-Oxygen Compounds
[12] | Laniel D, Geneste G, Weck G, Mezouar M, and Loubeyre P 2019 Phys. Rev. Lett. 122 066001 | Hexagonal Layered Polymeric Nitrogen Phase Synthesized near 250 GPa
[13] | Lei L, Tang Q Q, Zhang F, Liu S, Wu B B, and Zhou C Y 2020 Chin. Phys. Lett. 37 068101 | Evidence for a New Extended Solid of Nitrogen
[14] | Peng F, Yao Y, Liu H, and Ma Y 2015 J. Phys. Chem. Lett. 6 2363 | Crystalline LiN 5 Predicted from First-Principles as a Possible High-Energy Material
[15] | Xu Y, Wang Q, Shen C, Lin Q, Wang P, and Lu M 2017 Nature 549 78 | A series of energetic metal pentazolate hydrates
[16] | Zhang C, Sun C G, Hu B C, Yu C M, and Lu M 2017 Science 355 374 | Synthesis and characterization of the pentazolate anion cyclo -N 5 ˉ in (N 5 ) 6 (H 3 O) 3 (NH 4 ) 4 Cl
[17] | Huang B and Frapper G 2018 Chem. Mater. 30 7623 | Barium–Nitrogen Phases Under Pressure: Emergence of Structural Diversity and Nitrogen-Rich Compounds
[18] | Xia K, Yuan J, Zheng X, Liu C, Gao H, Wu Q, and Sun J 2019 J. Phys. Chem. Lett. 10 6166 | Predictions on High-Power Trivalent Metal Pentazolate Salts
[19] | Bykov M, Chariton S, Bykova E, Khandarkhaeva S, Fedotenko T, Ponomareva A V, Tidholm J, Tasnadi F, Abrikosov I A, Sedmak P, Prakapenka V, Hanfland M, Liermann H P, Mahmood M, Goncharov A F, Dubrovinskaia N, and Dubrovinsky L 2020 Angew. Chem. Int. Ed. Engl. 59 10321 | High‐Pressure Synthesis of Metal–Inorganic Frameworks Hf 4 N 20 ⋅N 2 , WN 8 ⋅N 2 , and Os 5 N 28 ⋅3 N 2 with Polymeric Nitrogen Linkers
[20] | Yuan J, Xia K, Wu J, and Sun J 2021 Sci. Chin. Phys. Mech. & Astron. 64 218211 | High-energy-density pentazolate salts: CaN10 and BaN10
[21] | Niu S, Li Z, Li H, Shi X, Yao Z, and Liu B 2021 Inorg. Chem. 60 6772 | New Cadmium–Nitrogen Compounds at High Pressures
[22] | Salke N P, Xia K, Fu S, Zhang Y, Greenberg E, Prakapenka V B, Liu J, Sun J, and Lin J F 2021 Phys. Rev. Lett. 126 065702 | Tungsten Hexanitride with Single-Bonded Armchairlike Hexazine Structure at High Pressure
[23] | Steele B A and Oleynik I I 2016 Chem. Phys. Lett. 643 21 | Sodium pentazolate: A nitrogen rich high energy density material
[24] | Laniel D, Winkler B, Koemets E, Fedotenko T, Bykov M, Bykova E, Dubrovinsky L, and Dubrovinskaia N 2019 Nat. Commun. 10 4515 | Synthesis of magnesium-nitrogen salts of polynitrogen anions
[25] | Bykov M, Fedotenko T, Chariton S, Laniel D, Glazyrin K, Hanfland M, Smith J S, Prakapenka V B, Mahmood M F, Goncharov A F, Ponomareva A V, Tasnádi F, Abrikosov A I, Bin M T, Hotz I, Rudenko A N, Katsnelson M I, Dubrovinskaia N, Dubrovinsky L, and Abrikosov I A 2021 Phys. Rev. Lett. 126 175501 | High-Pressure Synthesis of Dirac Materials: Layered van der Waals Bonded Polymorph
[26] | Zhang J, Niu C, Zhang H, Zhao J, Wang X, and Zeng Z 2021 J. Phys. Chem. Lett. 12 5731 | Polymerization of Nitrogen in Nitrogen–Fluorine Compounds under Pressure
[27] | Medeiros P V C, Marks S, Wynn J M, Vasylenko A, Ramasse Q M, Quigley D, Sloan J, and Morris A J 2017 ACS Nano 11 6178 | Single-Atom Scale Structural Selectivity in Te Nanowires Encapsulated Inside Ultranarrow, Single-Walled Carbon Nanotubes
[28] | Slade C A, Sanchez A M, and Sloan J 2019 Nano Lett. 19 2979 | Unprecedented New Crystalline Forms of SnSe in Narrow to Medium Diameter Carbon Nanotubes
[29] | Wang Z X, Ke X Z, Zhu Z Y, Zhang F S, Ruan M L, and Yang J Q 2000 Phys. Rev. B 61 R2472 | Carbon-atom chain formation in the core of nanotubes
[30] | Sandoval S, Tobias G, and Flahaut E 2019 Inorg. Chim. Acta 492 66 | Structure of inorganic nanocrystals confined within carbon nanotubes
[31] | Gimondi I and Salvalaglio M 2018 Mol. Syst. Des. Eng. 3 243 | CO 2 packing polymorphism under confinement in cylindrical nanopores
[32] | Lei S, Paulus B, Li S, and Schmidt B 2016 J. Comput. Chem. 37 1313 | Curvature-dependent adsorption of water inside and outside armchair carbon nanotubes
[33] | Fujimori T, Morelos-Gomez A, Zhu Z, Muramatsu H, Futamura R, Urita K, Terrones M, Hayashi T, Endo M, Hong S Y, Choi Y C, Tomanek D, and Kaneko K 2013 Nat. Commun. 4 2162 | Conducting linear chains of sulphur inside carbon nanotubes
[34] | Thang P, Oh S, Stonemeyer S, Shevitski B, Cain J D, Song C, Ercius P, Cohen M L, and Zettl A 2020 Phys. Rev. Lett. 124 206403 | Emergence of Topologically Nontrivial Spin-Polarized States in a Segmented Linear Chain
[35] | Abou-Rachid H, Hu A, Timoshevskii V, Song Y, and Lussier L S 2008 Phys. Rev. Lett. 100 196401 | Nanoscale High Energetic Materials: A Polymeric Nitrogen Chain Confined inside a Carbon Nanotube
[36] | Li Y, Bai H, Lin F, and Huang Y 2018 Physica E 103 444 | Energetics and electronic structures of nitrogen chains encapsulated in zigzag carbon nanotube
[37] | Benchafia E M, Yao Z, Yuan G, Chou T, Piao H, Wang X, and Iqbal Z 2017 Nat. Commun. 8 930 | Cubic gauche polymeric nitrogen under ambient conditions
[38] | Ji W, Timoshevskii V, Guo H, Abou-Rachid H, and Lussier L S 2009 Appl. Phys. Lett. 95 021904 | Thermal stability and formation barrier of a high-energetic material N8 polymer nitrogen encapsulated in (5,5) carbon nanotube
[39] | Liu S J, Yao M G, Ma F X, Liu B, Yao Z, Liu R, Cui T, and Liu B B 2016 J. Phys. Chem. C 120 16412 | High Energetic Polymeric Nitrogen Stabilized in the Confinement of Boron Nitride Nanotube at Ambient Conditions
[40] | Liu S, Li H Y, Yao Z, and Lu S C 2021 Mater. Today Commun. 26 101670 | Study of cage-like diamondoid polymeric nitrogen N10 confined inside single-wall carbon-nanotube
[41] | Xia K, Gao H, Liu C, Yuan J N, Sun J, Wang H T, and Xing D Y 2018 Sci. Bull. 63 817 | A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search
[42] | Kamlet M J and Dickinson C 1968 J. Chem. Phys. 48 43 | Chemistry of Detonations. III. Evaluation of the Simplified Calculational Method for Chapman‐Jouguet Detonation Pressures on the Basis of Available Experimental Information
[43] | Zhang J, Oganov A R, Li X, and Niu H 2017 Phys. Rev. B 95 020103 | Pressure-stabilized hafnium nitrides and their properties
[44] | Perdew J P, Burke K, and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 | Generalized Gradient Approximation Made Simple
[45] | Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[46] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[47] | Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188 | Special points for Brillouin-zone integrations
[48] | Togo A, Oba F, and Tanaka I 2008 Phys. Rev. B 78 134106 | First-principles calculations of the ferroelastic transition between rutile-type and -type at high pressures