C $1s$ (layer-selection method) | C $1s$ (projection method) | O $1s$ (layer-selection method) | |
---|---|---|---|
$R$ (Å) | $1.34 \pm 0.03$ | $1.35 \pm 0.04$ | $1.34 \pm 0.05$ |
$A$ | $10.26 \pm 0.12$ | $14.34 \pm 0.23$ | $8.35 \pm 0.10$ |
$B$ | $0.56 \pm 0.09$ | $0.77 \pm 0.17$ | $0.36 \pm 0.13$ |
[1] | Yang J et al. 2018 Science 361 64 | Imaging CF 3 I conical intersection and photodissociation dynamics with ultrafast electron diffraction
[2] | Wang L et al. 2018 Nano Lett. 18 5172 | Unraveling Spatially Heterogeneous Ultrafast Carrier Dynamics of Single-Layer WSe 2 by Femtosecond Time-Resolved Photoemission Electron Microscopy
[3] | Glownia J et al. 2016 Phys. Rev. Lett. 117 153003 | Self-Referenced Coherent Diffraction X-Ray Movie of Ångstrom- and Femtosecond-Scale Atomic Motion
[4] | Itatani J et al. 2004 Nature 432 867 | Tomographic imaging of molecular orbitals
[5] | Erk B et al. 2014 Science 345 288 | Imaging charge transfer in iodomethane upon x-ray photoabsorption
[6] | Wolter B et al. 2016 Science 354 308 | Ultrafast electron diffraction imaging of bond breaking in di-ionized acetylene
[7] | Liu X J et al. 2008 Phys. Rev. Lett. 101 023001 | Internal Inelastic Scattering Satellite Probed by Molecular-Frame Photoelectron Angular Distributions from
[8] | Lucchese R R et al. 2012 J. Phys. B 45 190201 | Molecular-frame photoelectron angular distributions
[9] | Kazama M et al. 2012 J. Electron Spectrosc. Relat. Phenom. 185 535 | Multiple-scattering calculations for 1s photoelectron angular distributions from single oriented molecules in the energy region above 50eV
[10] | Williams J B et al. 2012 Phys. Rev. Lett. 108 233002 | Imaging Polyatomic Molecules in Three Dimensions Using Molecular Frame Photoelectron Angular Distributions
[11] | Fukuzawa H et al. 2019 J. Chem. Phys. 150 174306 | Probing molecular bond-length using molecular-frame photoelectron angular distributions
[12] | Adachi J I et al. 2009 J. Phys.: Conf. Ser. 190 012049 | Low kinetic energy photoelectron diffractions for C 1s and O 1s electrons of free CO molecules in the EXAFS region
[13] | Lucchese R R et al. 2007 J. Electron Spectrosc. Relat. Phenom. 155 95 | Projection methods for the analysis of molecular-frame photoelectron angular distributions
[14] | Tsuru S et al. 2014 Chem. Phys. Lett. 608 152 | Site-specific fragmentation probabilities deduced from O+–CO+ molecular frame photoelectron angular distributions from CO2
[15] | Saito N et al. 2005 J. Phys. B 38 L277 | Molecular frame photoelectron angular distribution for oxygen 1s photoemission from CO 2 molecules
[16] | Liu X J et al. 2007 J. Phys. B 40 485 | Molecular-frame photoelectron and electron-frame photoion angular distributions and their interrelation
[17] | Landers A et al. 2001 Phys. Rev. Lett. 87 013002 | Photoelectron Diffraction Mapping: Molecules Illuminated from Within
[18] | Fadley C et al. 1997 Prog. Surf. Sci. 54 341 | DIFFRACTION AND HOLOGRAPHY WITH PHOTOELECTRONS AND FLUORESCENT X-RAYS
[19] | Wider J et al. 2001 Phys. Rev. Lett. 86 2337 | Atomically Resolved Images from Near Node Photoelectron Holography Experiments on Al(111)
[20] | Fadley C S 1992 The study of Surface Structures by Photoelectron Diffraction and Auger Electron Diffraction (Boston, MA: Springer) pp 421–518 |
[21] | Kawai J et al. 2008 Surf. Interface Anal. 40 1579 | Atomic-level characterization of materials with core- and valence-level photoemission: basic phenomena and future directions
[22] | Nakajima K et al. 2015 Sci. Rep. 5 14065 | Photoelectron diffraction from laser-aligned molecules with X-ray free-electron laser pulses
[23] | Kastirke G et al. 2020 Phys. Rev. X 10 021052 | Photoelectron Diffraction Imaging of a Molecular Breakup Using an X-Ray Free-Electron Laser
[24] | Grundmann S et al. 2020 Science 370 339 | Zeptosecond birth time delay in molecular photoionization
[25] | Akoury D et al. 2007 Science 318 949 | The Simplest Double Slit: Interference and Entanglement in Double Photoionization of H 2
[26] | Tsuru S et al. 2014 J. Phys. B 47 071002 | Geometrical effect on the issue of asymmetric C 1 s photoelectron angular distributions detected in coincidence with the fragment ion pairs of CO + –O + for CO 2 molecules
[27] | Song S et al. 2019 Phys. Rev. A 99 022511 | Sequential electron emission and nuclear dissociation after the O excitation in molecules
[28] | Miron C and Morin P 2009 Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detectors Associated Equipment 601 66 | High-resolution inner-shell coincidence spectroscopy
[29] | Miron C et al. 1997 Rev. Sci. Instrum. 68 3728 | New high luminosity “double toroidal” electron spectrometer
[30] | Le G K et al. 2002 Rev. Sci. Instrum. 73 3885 | Development of a four-element conical electron lens dedicated to high resolution Auger electron–ion(s) coincidence experiments
[31] | Liu X J, Nicolas C, and Miron C 2013 Rev. Sci. Instrum. 84 033105 | Design of a lens table for a double toroidal electron spectrometer
[32] | Prümper G and Ueda K 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 574 350 | Electron–ion–ion coincidence experiments for photofragmentation of polyatomic molecules using pulsed electric fields: Treatment of random coincidences
[33] | Neeb M et al. 1998 J. Electron Spectrosc. Relat. Phenom. 88–91 19 | Vibrational fine structure on the core level photoelectron lines of small polyatomic molecules
[34] | Miyabe S et al. 2009 Phys. Rev. A 79 053401 | Theoretical study of asymmetric molecular-frame photoelectron angular distributions for photoejection from
[35] | Domcke W and Cederbaum L S 1977 Chem. Phys. 25 189 | Vibronic coupling and symmetry breaking in core electron ionization
[36] | Kivimäki A et al. 1997 Phys. Rev. Lett. 79 998 | Vibrationally Resolved O Photoelectron Spectrum of : Vibronic Coupling and Dynamic Core-Hole Localization
[37] | Hatamoto T et al. 2007 J. Electron Spectrosc. Relat. Phenom. 155 54 | Vibrationally resolved C and O 1s photoelectron spectra of carbon dioxide