Express Letter
Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler
-
Abstract
The development of high-fidelity two-qubit quantum gates is essential for digital quantum computing. Here, we propose and realize an all-microwave parametric controlled-Z (CZ) gates by coupling strength modulation in a superconducting Transmon qubit system with tunable couplers. After optimizing the design of the tunable coupler together with the control pulse numerically, we experimentally realized a 100 ns CZ gate with high fidelity of 99.38%±0.34% and the control error being 0.1%. We note that our CZ gates are not affected by pulse distortion and do not need pulse correction, providing a solution for the real-time pulse generation in a dynamic quantum feedback circuit. With the expectation of utilizing our all-microwave control scheme to reduce the number of control lines through frequency multiplexing in the future, our scheme draws a blueprint for the high-integrable quantum hardware design. -
-
References
[1] Campbell E T, Terhal B M, and Vuillot C 2017 Nature 549 172 doi: 10.1038/nature23460[2] Fowler A G, Mariantoni M, Martinis J M, and Cleland A N 2012 Phys. Rev. A 86 032324 doi: 10.1103/PhysRevA.86.032324[3] Chen Z, Kelly J, Quintana C, Barends R, Campbell B, Chen Y, Chiaro B, Dunsworth A, Fowler A G, Lucero E, Jeffrey E, Megrant A, Mutus J, Neeley M, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Korotkov A N, and Martinis J M 2016 Phys. Rev. Lett. 116 020501 doi: 10.1103/PhysRevLett.116.020501[4] Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B et al.. 2014 Nature 508 500 doi: 10.1038/nature13171[5] Negirneac V, Ali H, Muthusubramanian N, Battistel F, Sagastizabal R, M, Marques S M, Marques J F, Vlothuizen W J, Beekman M et al.. 2021 Phys. Rev. Lett. 126 220502 doi: 10.1103/PhysRevLett.126.220502[6] Li S, Castellano A D, Wang S, Wu Y, Gong M, Yan Z, Rong H, Deng H, Zha C, Guo C et al.. 2019 npj Quantum Inf. 5 1 doi: 10.1038/s41534-018-0113-z[7] Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach G O, McNally C, Kim D et al.. 2021 Phys. Rev. X 11 021058 doi: 10.1103/PhysRevX.11.021058[8] Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B et al.. 2014 Phys. Rev. Lett. 113 220502 doi: 10.1103/PhysRevLett.113.220502[9] Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X et al.. 2020 Phys. Rev. Appl. 14 024070 doi: 10.1103/PhysRevApplied.14.024070[10] Collodo M C, Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A, and Eichler C 2020 Phys. Rev. Lett. 125 240502 doi: 10.1103/PhysRevLett.125.240502[11] Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J et al.. 2020 Phys. Rev. Lett. 125 240503 doi: 10.1103/PhysRevLett.125.240503[12] Ye Y, Cao S, Wu Y, Chen X, Zhu Q, Li S, Chen F, Gong M, Zha C, Huang H L et al.. 2021 Chin. Phys. Lett. 38 100301 doi: 10.1088/0256-307X/38/10/100301[13] McKay D C, Filipp S, Mezzacapo A, Magesan E, Chow J M, and Gambetta J M 2016 Phys. Rev. Appl. 6 064007 doi: 10.1103/PhysRevApplied.6.064007[14] Sete E A, Didier N, Chen A Q, Kulshreshtha S, Manenti R, and Poletto S 2021 Phys. Rev. Appl. 16 024050 doi: 10.1103/PhysRevApplied.16.024050[15] Kosen S, Li H X, Rommel M, Shiri D, Warren C, Grönberg L, Salonen J, Abad T, Biznárová J, Caputo M et al.. 2021 arXiv:2112.02717 [quant-ph][16] Ganzhorn M, Salis G, Egger D, Fuhrer A, Mergenthaler M, Müller C, Müller P, Paredes S, Pechal M, Werninghaus M et al.. 2020 Phys. Rev. Res. 2 033447 doi: 10.1103/PhysRevResearch.2.033447[17] Sheldon S, Magesan E, Chow J M, and Gambetta J M 2016 Phys. Rev. A 93 060302 doi: 10.1103/PhysRevA.93.060302[18] Kandala A, Wei K, Srinivasan S, Magesan E, Carnevale S, Keefe G, Klaus D, Dial O, and McKay D 2021 Phys. Rev. Lett. 127 130501 doi: 10.1103/PhysRevLett.127.130501[19] Barends R, Quintana C, Petukhov A, Chen Y, Kafri D, Kechedzhi K, Collins R, Naaman O, Boixo S, Arute F et al.. 2019 Phys. Rev. Lett. 123 210501 doi: 10.1103/PhysRevLett.123.210501[20] Foxen B, Mutus J, Lucero E, Jeffrey E, Sank D, Barends R, Arya K, Burkett B, Chen Y, Chen Z et al.. 2019 Supercond. Sci. Technol. 32 015012 doi: 10.1088/1361-6668/aaf048[21] Rol M A, Ciorciaro L, Malinowski F K, Tarasinski B M, Sagastizabal R E, Bultink C C, Salathe Y, Haandbæk N, Sedivy J, and DiCarlo L 2020 Appl. Phys. Lett. 116 054001 doi: 10.1063/1.5133894[22] Andersen C K, Remm A, Lazar S, Krinner S, Heinsoo J, Besse J C, Gabureac M, Wallraff A, and Eichler C 2019 npj Quantum Inf. 5 69 doi: 10.1038/s41534-019-0185-4[23] Nelder J A and Mead R 1965 Comput. J. 7 308 doi: 10.1093/comjnl/7.4.308[24] McKinnon K I 1998 SIAM J. Optim. 9 148 doi: 10.1137/S1052623496303482[25] Rol M, Bultink C C, O'Brien T E, De Jong S, Theis L S, Fu X, Luthi F, Vermeulen R F, De Sterke J, Bruno A et al.. 2017 Phys. Rev. Appl. 7 041001 doi: 10.1103/PhysRevApplied.7.041001[26] Sendelbach S, Hover D, Mück M, and McDermott R 2009 Phys. Rev. Lett. 103 117001 doi: 10.1103/PhysRevLett.103.117001[27] Fried E S, Sivarajah P, Didier N, Sete E A, da S M P, Johnson B R, and Ryan C A 2019 arXiv:1908.11370 [quant-ph][28] Megrant A, Neill C, Barends R, Chiaro B, Chen Y, Feigl L, Kelly J, Lucero E, Mariantoni M, O'Malley P J et al.. 2012 Appl. Phys. Lett. 100 113510 doi: 10.1063/1.3693409[29] Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S, and Wineland D J 2008 Phys. Rev. A 77 012307 doi: 10.1103/PhysRevA.77.012307[30] Epstein J M, Cross A W, Magesan E, and Gambetta J M 2014 Phys. Rev. A 89 062321 doi: 10.1103/PhysRevA.89.062321[31] Proctor T, Rudinger K, Young K, Sarovar M, and Blume-Kohout R 2017 Phys. Rev. Lett. 119 130502 doi: 10.1103/PhysRevLett.119.130502[32] Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, and Neven H 2018 Nat. Phys. 14 595 doi: 10.1038/s41567-018-0124-x[33] Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A et al.. 2019 Nature 574 505 doi: 10.1038/s41586-019-1666-5[34] Dai D and Bowers J E 2014 Nanophotonics 3 283 doi: 10.1515/nanoph-2013-0021[35] Kobe O B, Chuma J, Jamisola J R, and Chose M 2017 Eng. Sci. Technol. Int. J. 20 460 doi: 10.1016/j.jestch.2016.09.024 -
Related Articles
[1] Yangsen Ye, Sirui Cao, Yulin Wu, Xiawei Chen, Qingling Zhu, Shaowei Li, Fusheng Chen, Ming Gong, Chen Zha, He-Liang Huang, Youwei Zhao, Shiyu Wang, Shaojun Guo, Haoran Qian, Futian Liang, Jin Lin, Yu Xu, Cheng Guo, Lihua Sun, Na Li, Hui Deng, Xiaobo Zhu, Jian-Wei Pan. Realization of High-Fidelity Controlled-Phase Gates in Extensible Superconducting Qubits Design with a Tunable Coupler [J]. Chin. Phys. Lett., 2021, 38(10): 100301. doi: 10.1088/0256-307X/38/10/100301 [2] LIAN Jin, FU Jin-Xin, GAN Lin, LI Zhi-Yuan. Experimental Realization of a Magnetically Tunable Cavity in a Gyromagnetic Photonic Crystal [J]. Chin. Phys. Lett., 2012, 29(7): 074208. doi: 10.1088/0256-307X/29/7/074208 [3] HUANG Xiu-Hua, CHEN Zhi-Hua, TANG Yao-Xiang, LIN Xiu-Min. Realization of a Multiqubit Conditional Phase Gate by Virtue of a Weak Coherent Light Field [J]. Chin. Phys. Lett., 2009, 26(6): 060308. doi: 10.1088/0256-307X/26/6/060308 [4] TANG Shi-Qing, ZHANG Deng-Yu, XIE Li-Jun, ZHAN Xiao-Gui, GAO Feng. Realization of Three-Qubit Controlled-Phase Gate Operation with Atoms in Cavity QED System [J]. Chin. Phys. Lett., 2009, 26(2): 020310. doi: 10.1088/0256-307X/26/2/020310 [5] HUO Jian-Li, WANG Shun-Jin, TAO Jun. Physical Realization of Quantum C-Not Gate [J]. Chin. Phys. Lett., 2008, 25(3): 813-816. [6] ZHENG Shi-Biao. Tunable Nongeometric Phase Gates for Two Hot Ions via Adiabatic Evolution of Dark States [J]. Chin. Phys. Lett., 2006, 23(12): 3155-3157. [7] ZENG Lü-Ming, XING Da, GU Huai-Min, YANG Di-Wu, YANG Si-Hua, XIANG Liang-Zhong. Fast Microwave-Induced Thermoacoustic Tomography Based on Multi-Element Phase-Controlled Focus Technique [J]. Chin. Phys. Lett., 2006, 23(5): 1215-1218. [8] ZANG Wei-Ping, TIAN Jian-Guo, LIU Zhi-Bo, ZHOU Wen-Yuan, SONG Feng, ZHANG Chun-Ping. Coordinate Transformation for Fast Simulation of Z-Scan Measurements [J]. Chin. Phys. Lett., 2004, 21(4): 662-665. [9] ZHENG Shi-Biao, FENG Mang, ZHU Xi-Wen. Realization of Quantum Logic Gates in Ion Traps Without Any Requirement on the Lamb-Dicke Parameter [J]. Chin. Phys. Lett., 2000, 17(5): 321-323. [10] WANG Xiao-guang, YU Rong-jin, FU Jian-zheng. Construction of General Unitary Transformation for Conditional Quantum Dynamics and Realization of Quantum Controlled Gates [J]. Chin. Phys. Lett., 1998, 15(6): 395-397. -
Supplements
Other Related Supplements
-
Cover image
348KB
-
-
Cited by
Periodical cited type(9)
1. Li, T.-M., Zhang, J.-C., Chen, B.-J. et al. High-precision pulse calibration of tunable couplers for high-fidelity two-qubit gates in superconducting quantum processors. Physical Review Applied, 2025, 23(2): 024059. DOI:10.1103/PhysRevApplied.23.024059 2. Chen, Z., Liu, G., Ma, X. Optimizing Circuit Reusing and its Application in Randomized Benchmarking. Quantum, 2025. DOI:10.22331/q-2025-01-23-1606 3. Geng, X., Jiang, L., Cheng, M. et al. Flux-insensitive qubit from a split transmon shunted with a Josephson junction. Physical Review A, 2024, 110(6): 062607. DOI:10.1103/PhysRevA.110.062607 4. Yang, T., Wang, W., Zhao, B. et al. A processor architecture design method for improving reusability of special-purpose superconducting quantum processor. Quantum Information Processing, 2024, 23(6): 200. DOI:10.1007/s11128-024-04425-7 5. Li, N., Li, Y.-H., Fan, D.-J. et al. Optical transmission of microwave control signal towards large-scale superconducting quantum computing. Optics Express, 2024, 32(3): 3989-3996. DOI:10.1364/OE.514909 6. Ezratty, O.. Perspective on superconducting qubit quantum computing. European Physical Journal A, 2023, 59(5): 94. DOI:10.1140/epja/s10050-023-01006-7 7. Xu, P., Zhang, R., Zhao, S.-M. Realization of the iSWAP-like gate among the superconducting qutrits. Chinese Physics B, 2023, 32(2): 020306. DOI:10.1088/1674-1056/ac89e7 8. Leng, S.-Y., Lü, D.-Y., Yang, S.-L. et al. Simulating the Dicke lattice model and quantum phase transitions using an array of coupled resonators. Journal of Physics Condensed Matter, 2022, 34(41): 415402. DOI:10.1088/1361-648X/ac84bd 9. Kairys, P., Humble, T.S. Towards string order melting of spin-1 particle chains in superconducting transmons using optimal control. Physical Review Research, 2022, 4(4): 043189. DOI:10.1103/PhysRevResearch.4.043189 Other cited types(0)