[1] | Campbell E T, Terhal B M, and Vuillot C 2017 Nature 549 172 | Roads towards fault-tolerant universal quantum computation
[2] | Fowler A G, Mariantoni M, Martinis J M, and Cleland A N 2012 Phys. Rev. A 86 032324 | Surface codes: Towards practical large-scale quantum computation
[3] | Chen Z, Kelly J, Quintana C, Barends R, Campbell B, Chen Y, Chiaro B, Dunsworth A, Fowler A G, Lucero E, Jeffrey E, Megrant A, Mutus J, Neeley M, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, White T C, Korotkov A N, and Martinis J M 2016 Phys. Rev. Lett. 116 020501 | Measuring and Suppressing Quantum State Leakage in a Superconducting Qubit
[4] | Barends R, Kelly J, Megrant A, Veitia A, Sank D, Jeffrey E, White T C, Mutus J, Fowler A G, Campbell B et al. 2014 Nature 508 500 | Superconducting quantum circuits at the surface code threshold for fault tolerance
[5] | Negirneac V, Ali H, Muthusubramanian N, Battistel F, Sagastizabal R, M, Marques S M, Marques J F, Vlothuizen W J, Beekman M et al. 2021 Phys. Rev. Lett. 126 220502 | High-Fidelity Controlled- Gate with Maximal Intermediate Leakage Operating at the Speed Limit in a Superconducting Quantum Processor
[6] | Li S, Castellano A D, Wang S, Wu Y, Gong M, Yan Z, Rong H, Deng H, Zha C, Guo C et al. 2019 npj Quantum Inf. 5 1 | Soundness and completeness of quantum root-mean-square errors
[7] | Sung Y, Ding L, Braumüller J, Vepsäläinen A, Kannan B, Kjaergaard M, Greene A, Samach G O, McNally C, Kim D et al. 2021 Phys. Rev. X 11 021058 | Realization of High-Fidelity CZ and -Free iSWAP Gates with a Tunable Coupler
[8] | Chen Y, Neill C, Roushan P, Leung N, Fang M, Barends R, Kelly J, Campbell B, Chen Z, Chiaro B et al. 2014 Phys. Rev. Lett. 113 220502 | Qubit Architecture with High Coherence and Fast Tunable Coupling
[9] | Li X, Cai T, Yan H, Wang Z, Pan X, Ma Y, Cai W, Han J, Hua Z, Han X et al. 2020 Phys. Rev. Appl. 14 024070 | Tunable Coupler for Realizing a Controlled-Phase Gate with Dynamically Decoupled Regime in a Superconducting Circuit
[10] | Collodo M C, Herrmann J, Lacroix N, Andersen C K, Remm A, Lazar S, Besse J C, Walter T, Wallraff A, and Eichler C 2020 Phys. Rev. Lett. 125 240502 | Implementation of Conditional Phase Gates Based on Tunable Interactions
[11] | Xu Y, Chu J, Yuan J, Qiu J, Zhou Y, Zhang L, Tan X, Yu Y, Liu S, Li J et al. 2020 Phys. Rev. Lett. 125 240503 | High-Fidelity, High-Scalability Two-Qubit Gate Scheme for Superconducting Qubits
[12] | Ye Y, Cao S, Wu Y, Chen X, Zhu Q, Li S, Chen F, Gong M, Zha C, Huang H L et al. 2021 Chin. Phys. Lett. 38 100301 | Realization of High-Fidelity Controlled-Phase Gates in Extensible Superconducting Qubits Design with a Tunable Coupler
[13] | McKay D C, Filipp S, Mezzacapo A, Magesan E, Chow J M, and Gambetta J M 2016 Phys. Rev. Appl. 6 064007 | Universal Gate for Fixed-Frequency Qubits via a Tunable Bus
[14] | Sete E A, Didier N, Chen A Q, Kulshreshtha S, Manenti R, and Poletto S 2021 Phys. Rev. Appl. 16 024050 | Parametric-Resonance Entangling Gates with a Tunable Coupler
[15] | Kosen S, Li H X, Rommel M, Shiri D, Warren C, Grönberg L, Salonen J, Abad T, Biznárová J, Caputo M et al. 2021 arXiv:2112.02717 [quant-ph] | Building Blocks of a Flip-Chip Integrated Superconducting Quantum Processor
[16] | Ganzhorn M, Salis G, Egger D, Fuhrer A, Mergenthaler M, Müller C, Müller P, Paredes S, Pechal M, Werninghaus M et al. 2020 Phys. Rev. Res. 2 033447 | Benchmarking the noise sensitivity of different parametric two-qubit gates in a single superconducting quantum computing platform
[17] | Sheldon S, Magesan E, Chow J M, and Gambetta J M 2016 Phys. Rev. A 93 060302 | Procedure for systematically tuning up cross-talk in the cross-resonance gate
[18] | Kandala A, Wei K, Srinivasan S, Magesan E, Carnevale S, Keefe G, Klaus D, Dial O, and McKay D 2021 Phys. Rev. Lett. 127 130501 | Demonstration of a High-Fidelity cnot Gate for Fixed-Frequency Transmons with Engineered Suppression
[19] | Barends R, Quintana C, Petukhov A, Chen Y, Kafri D, Kechedzhi K, Collins R, Naaman O, Boixo S, Arute F et al. 2019 Phys. Rev. Lett. 123 210501 | Diabatic Gates for Frequency-Tunable Superconducting Qubits
[20] | Foxen B, Mutus J, Lucero E, Jeffrey E, Sank D, Barends R, Arya K, Burkett B, Chen Y, Chen Z et al. 2019 Supercond. Sci. Technol. 32 015012 | High speed flux sampling for tunable superconducting qubits with an embedded cryogenic transducer
[21] | Rol M A, Ciorciaro L, Malinowski F K, Tarasinski B M, Sagastizabal R E, Bultink C C, Salathe Y, Haandbæk N, Sedivy J, and DiCarlo L 2020 Appl. Phys. Lett. 116 054001 | Time-domain characterization and correction of on-chip distortion of control pulses in a quantum processor
[22] | Andersen C K, Remm A, Lazar S, Krinner S, Heinsoo J, Besse J C, Gabureac M, Wallraff A, and Eichler C 2019 npj Quantum Inf. 5 69 | Entanglement stabilization using ancilla-based parity detection and real-time feedback in superconducting circuits
[23] | Nelder J A and Mead R 1965 Comput. J. 7 308 | A Simplex Method for Function Minimization
[24] | McKinnon K I 1998 SIAM J. Optim. 9 148 | Convergence of the Nelder–Mead Simplex Method to a Nonstationary Point
[25] | Rol M, Bultink C C, O'Brien T E, De Jong S, Theis L S, Fu X, Luthi F, Vermeulen R F, De Sterke J, Bruno A et al. 2017 Phys. Rev. Appl. 7 041001 | Restless Tuneup of High-Fidelity Qubit Gates
[26] | Sendelbach S, Hover D, Mück M, and McDermott R 2009 Phys. Rev. Lett. 103 117001 | Complex Inductance, Excess Noise, and Surface Magnetism in dc SQUIDs
[27] | Fried E S, Sivarajah P, Didier N, Sete E A, da S M P, Johnson B R, and Ryan C A 2019 arXiv:1908.11370 [quant-ph] | Assessing the Influence of Broadband Instrumentation Noise on Parametrically Modulated Superconducting Qubits
[28] | Megrant A, Neill C, Barends R, Chiaro B, Chen Y, Feigl L, Kelly J, Lucero E, Mariantoni M, O'Malley P J et al. 2012 Appl. Phys. Lett. 100 113510 | Planar superconducting resonators with internal quality factors above one million
[29] | Knill E, Leibfried D, Reichle R, Britton J, Blakestad R B, Jost J D, Langer C, Ozeri R, Seidelin S, and Wineland D J 2008 Phys. Rev. A 77 012307 | Randomized benchmarking of quantum gates
[30] | Epstein J M, Cross A W, Magesan E, and Gambetta J M 2014 Phys. Rev. A 89 062321 | Investigating the limits of randomized benchmarking protocols
[31] | Proctor T, Rudinger K, Young K, Sarovar M, and Blume-Kohout R 2017 Phys. Rev. Lett. 119 130502 | What Randomized Benchmarking Actually Measures
[32] | Boixo S, Isakov S V, Smelyanskiy V N, Babbush R, Ding N, Jiang Z, Bremner M J, Martinis J M, and Neven H 2018 Nat. Phys. 14 595 | Characterizing quantum supremacy in near-term devices
[33] | Arute F, Arya K, Babbush R, Bacon D, Bardin J C, Barends R, Biswas R, Boixo S, Brandao F G, Buell D A et al. 2019 Nature 574 505 | Quantum supremacy using a programmable superconducting processor
[34] | Dai D and Bowers J E 2014 Nanophotonics 3 283 | Silicon-based on-chip multiplexing technologies and devices for Peta-bit optical interconnects
[35] | Kobe O B, Chuma J, Jamisola J R, and Chose M 2017 Eng. Sci. Technol. Int. J. 20 460 | A review on quality factor enhanced on-chip microwave planar resonators