[1] | Badding J V 1998 Annu. Rev. Mater. Sci. 28 631 | HIGH-PRESSURE SYNTHESIS, CHARACTERIZATION, AND TUNING OF SOLID STATE MATERIALS
[2] | Paul F and M 2002 Nat. Mater. 1 19 | New materials from high-pressure experiments
[3] | Snider E, Dasenbrock-Gammon N, McBride R, Debessai M, Vindana H, Vencatasamy K, Lawler K V, Salamat A, and Dias P 2020 Nature 586 373 | Room-temperature superconductivity in a carbonaceous sulfur hydride
[4] | Millot M and Coppari F 2019 Nature 569 251 | Nanosecond X-ray diffraction of shock-compressed superionic water ice
[5] | Hou M Q, He Y, Jang B G, Sun S C, Zhuang Y K, Deng L W, Tang R L, Chen J H, Ke F, Meng Y, Prakapenka V B, Chen B, Shim J H, Liu J, Kim D Y, Hu Q Y, Pickard C J, Needs R J, and Mao H K 2021 Nat. Geosci. 14 174 | Superionic iron oxide–hydroxide in Earth’s deep mantle
[6] | García-Moreno O, Alvarez-Vega M, García-Alvarado F, García-Jaca J, Gallardo-Amores J M, Sanjuán M L, and Amador U 2001 Chem. Mater. 13 1570 | Influence of the Structure on the Electrochemical Performance of Lithium Transition Metal Phosphates as Cathodic Materials in Rechargeable Lithium Batteries: A New High-Pressure Form of LiMPO 4 (M = Fe and Ni)
[7] | Amador U, Gallardo-Amores J M, Heymann G, Huppertz H, Morán E, and Arroyo-de Dompablo M E 2009 Solid State Sci. 11 343 | High pressure polymorphs of LiCoPO4 and LiCoAsO4
[8] | Wang X, Loa I, Kunc K, Syassen K, and Amboage M 2005 Phys. Rev. B 72 224102 | Effect of pressure on the structural properties and Raman modes of
[9] | Fell C R, Lee D H, Meng Y S, Gallardo-Amores J M, Moran E, and Arroyo-de Dompablo M E 2012 Energy & Environ. Sci. 5 6214 | High pressure driven structural and electrochemical modifications in layered lithium transition metal intercalation oxides
[10] | Piszora P, Nowicki W, and Darul J 2008 J. Mater. Chem. 18 2447 | High-pressure metaelastic properties of LixMn3−xO4 (x = 0.87, 0.94, 1.00)
[11] | Yamaura K, Huang Q Z, Zhang L Q, Takada K, Baba Y, Nagai T, Matsui Y, Kosuda K, and Takayama-Muromachi E 2006 J. Am. Chem. Soc. 128 9448 | Spinel-to-CaFe 2 O 4 -Type Structural Transformation in LiMn 2 O 4 under High Pressure
[12] | Huang Y W, He Y, Sheng H, Lu X, Dong H N, Samanta S, Dong H L, Li X F, Kim D Y, Mao H K, Liu Y Z, Li H P, Li H, and Wang L 2019 Natl. Sci. Rev. 6 239 | Li-ion battery material under high pressure: amorphization and enhanced conductivity of Li4Ti5O12
[13] | Yang W G, Kim D Y, Yang L X, Li N N, Tang L Y, Amine K, and Mao H K 2017 Adv. Sci. 4 1600453 | Oxygen‐Rich Lithium Oxide Phases Formed at High Pressure for Potential Lithium–Air Battery Electrode
[14] | Lundegaard L F, Weck G, Mcmahon M I, Desgreniers S, and Loubeyre P 2006 Nature 443 201 | Observation of an O8 molecular lattice in the ɛ phase of solid oxygen
[15] | Meng Y, Eng P J, Tse J S, Shaw D M, Hu M Y, Shu J, Gramsch S A, Kao C, Hemley R J, and Mao H K 2008 Proc. Natl. Acad. Sci. USA 105 11640 | Inelastic x-ray scattering of dense solid oxygen: Evidence for intermolecular bonding
[16] | Dong X, Hou J Y, Kong J, Cui H X, Li Y L, Oganov A R, Li K, Zheng H Y, Zhou X F, and Wang H T 2019 Phys. Rev. B 100 144104 | Predicted lithium oxide compounds and superconducting low-pressure
[17] | Stixrude L, Cohen R E, and Hemley R J 1998 Rev. Mineral. Geochem. 37 639 |
[18] | Kresse G 1995 J. Non-Cryst. Solids 192 222 | Ab initio molecular dynamics for liquid metals
[19] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[20] | Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 | Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
[21] | Perdew J and Zunger A 1981 Phys. Rev. B 23 5048 | Self-interaction correction to density-functional approximations for many-electron systems
[22] | He Y, Sun S, and Li H P 2021 Phys. Rev. B 103 174105 | Ab initio molecular dynamics investigation of the elastic properties of superionic under high temperature and pressure
[23] | Mouhat F and Coudert F X 2014 Phys. Rev. 90 224104 | Necessary and sufficient elastic stability conditions in various crystal systems
[24] | Voigt W 1928 Lehrbuch der Kristallphysik (Leipzig: Teubner) (in Germany) |
[25] | Reuss A 1929 Z. Angew. Math. Mech. 9 49 | Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle .
[26] | Hill B R 1952 Proc. Phys. Soc. A 65 349 | The Elastic Behaviour of a Crystalline Aggregate
[27] | Anderson D 1989 Theory of the Earth (Boston: Blackwell Scientific) |
[28] | Karki B B, Stixrude L, Clark S J, Warren M C, Ackland G J, and Crain J 1997 Am. Mineral. 82 51 | Structure and elasticity of MgO at high pressure
[29] | Mainprice D, Hielscher R, and Schaeben H 2011 Geological Society London Special Publications 360 175 |
[30] | Henkelman G B, Uberuaga P, and Jónsson H 2000 J. Chem. Phys. 113 9901 | A climbing image nudged elastic band method for finding saddle points and minimum energy paths
[31] | Bühl M and Kabrede H 2006 ChemPhysChem 7 2290 | Acidity of Uranyl(VI) Hydrate Studied with First-Principles Molecular Dynamics Simulations
[32] | Allen M P and Tildesley D J 1991 Computer Simulation of Liquids (New York: Oxford University Press) |
[33] | Parrinello M and Rahman A 1980 Phys. Rev. Lett. 45 1196 | Crystal Structure and Pair Potentials: A Molecular-Dynamics Study
[34] | Parrinello N and Rahman A 1981 J. Appl. Phys. 52 7182 | Polymorphic transitions in single crystals: A new molecular dynamics method
[35] | Sun S C and He Y 2019 Phys. Chem. Miner. 46 935 | First-principles investigations on the formation of H2O defects in lizardite with influence on the elastic property