Processing math: 100%
Express Letter

Large Room-Temperature Magnetoresistance in van der Waals Ferromagnet/Semiconductor Junctions

    Show all affliationsShow less
  • Received Date: November 13, 2022
  • Published Date: November 30, 2022
  • A magnetic tunnel junction (MTJ) is the core component in memory technologies, such as the magnetic random-access memory, magnetic sensors and programmable logic devices. In particular, MTJs based on two-dimensional van der Waals (vdW) heterostructures offer unprecedented opportunities for low power consumption and miniaturization of spintronic devices. However, their operation at room temperature remains a challenge. Here, we report a large tunnel magnetoresistance (TMR) of up to 85% at room temperature (T=300 K) in vdW MTJs based on a thin (<10 nm) semiconductor spacer WSe2 layer embedded between two Fe3GaTe2 electrodes with intrinsic above-room-temperature ferromagnetism. The TMR in the MTJ increases with decreasing temperature up to 164% at T=10 K. The demonstration of TMR in ultra-thin MTJs at room temperature opens a realistic and promising route for next-generation spintronic applications beyond the current state of the art.
  • Article Text

  • [1]
    Yang H, Valenzuela S O, Chshiev M, Couet S, Dieny B, Dlubak B, Fert A, Garello K, Jamet M, Jeong D E, Lee K, Lee T, Martin M B, Kar G S, Seneor P, Shin H J, and Roche S 2022 Nature 606 663

    Google Scholar

    [2]
    Moodera J S, Kinder L R, Wong T M, and Meservey R 1995 Phys. Rev. Lett. 74 3273

    Google Scholar

    [3]
    Wang W G, Li M G, Hageman S, and Chien C L 2012 Nat. Mater. 11 64

    Google Scholar

    [4]
    Wang W Y, Narayan A, Tang L, Dolui K, Liu Y W, Yuan X, Jin Y B, Wu Y, Rungger I, Sanvito S, and Xiu F X 2015 Nano Lett. 15 5261

    Google Scholar

    [5]
    Butler W H, Zhang X G, Schulthess T C, and MacLaren J M 2001 Phys. Rev. B 63 054416

    Google Scholar

    [6]
    Yuasa S, Nagahama T, Fukushima A, Suzuki Y, and Ando K 2004 Nat. Mater. 3 868

    Google Scholar

    [7]
    Kalitsov A, Zermatten P J, Bonell F, Gaudin G, Andrieu S, Tiusan C, Chshiev M, and Velev J P 2013 J. Phys.: Condens. Matter 25 496005

    Google Scholar

    [8]
    Dorneles L S, Sommer R L, and Schelp L F 2002 J. Appl. Phys. 91 7971

    Google Scholar

    [9]
    Ning J, Zhou Y, Zhang J C, Lu W, Dong J G, Yan C C, Wang D, Shen X, Feng X, Zhou H, and Hao Y 2020 Appl. Phys. Lett. 117 163104

    Google Scholar

    [10]
    Xie S, Shiffa M, Shiffa M, Kudrynskyi Z R, Makarovskiy O, Kovalyuk Z D, Zhu W, Wang K, and Patanè A 2022 npj 2D Mater. Appl. 6 61

    Google Scholar

    [11]
    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, and Zhang X 2017 Nature 546 265

    Google Scholar

    [12]
    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, and Xu X 2017 Nature 546 270

    Google Scholar

    [13]
    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, and Xu X 2018 Nat. Nanotechnol. 13 544

    Google Scholar

    [14]
    Fei Z Y, Huang B, Malinowski P, Wang W B, Song T C, Sanchez J, Yao W, Xiao D, Zhu X Y, May A F, Wu W D, Cobden D H, Chu J H, and Xu X D 2018 Nat. Mater. 17 778

    Google Scholar

    [15]
    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, and Zhang Y 2018 Nature 563 94

    Google Scholar

    [16]
    May A F, Ovchinnikov D, Zheng Q, Hermann R, Calder S, Huang B, Fei Z, Liu Y, Xu X, and McGuire M A 2019 ACS Nano 13 4436

    Google Scholar

    [17]
    Hu C, Zhang D, Yan F, Li Y, Lv Q, Zhu W, Wei Z, Chang K, and Wang K 2020 Sci. Bull. 65 1072

    Google Scholar

    [18]
    Ye X G, Zhu P F, Xu W Z, Shang N, Liu K, and Liao Z M 2022 Chin. Phys. Lett. 39 037303

    Google Scholar

    [19]
    Feng H, Li Y, Shi Y, Xie H Y, Li Y, and Xu Y 2022 Chin. Phys. Lett. 39 077501

    Google Scholar

    [20]
    Liu S, Yuan X, Zou Y, Sheng Y, Huang C, Zhang E, Ling J, Liu Y, Wang W, Zhang C, Zou J, Wang K, and Xiu F 2017 npj 2D Mater. Appl. 1 30

    Google Scholar

    [21]
    Kim K, Seo J, Lee E, Ko K T, Kim B S, Jang B G, Ok J M, Lee J, Jo Y J, Kang W, Shim J H, Kim C, Yeom H W, Il M B, Yang B J, and Kim J S 2018 Nat. Mater. 17 794

    Google Scholar

    [22]
    Albarakati S, Tan C, Chen Z J, Partridge J G, Zheng G, Farrar L, Mayes E L H, Field M R, Lee C, Wang Y, Xiong Y, Tian M, Xiang F, Hamilton A R, Tretiakov O A, Culcer D, Zhao Y J, and Wang L 2019 Sci. Adv. 5 eaaw0409

    Google Scholar

    [23]
    Alghamdi M, Lohmann M, Li J, Jothi P R, Shao Q, Aldosary M, Su T, Fokwa B P T, and Shi J 2019 Nano Lett. 19 4400

    Google Scholar

    [24]
    Ding B, Li Z, Xu G, Li H, Hou Z, Liu E, Xi X, Xu F, Yao Y, and Wang W 2020 Nano Lett. 20 868

    Google Scholar

    [25]
    Lin H, Yan F, Hu C, Lv Q, Zhu W, Wang Z, Wei Z, Chang K, and Wang K 2020 ACS Appl. Mater. Interfaces 12 43921

    Google Scholar

    [26]
    Zhu W, Lin H, Yan F, Hu C, Wang Z, Zhao L, Deng Y, Kudrynskyi Z R, Zhou T, Kovalyuk Z D, Zheng Y, Patanè A, Žutić I, Li S, Zheng H, and Wang K 2021 Adv. Mater. 33 2104658

    Google Scholar

    [27]
    Zheng Y, Ma X, Yan F, Lin H, Zhu W, Ji Y, Wang R, and Wang K 2022 npj 2D Mater. Appl. 6 62

    Google Scholar

    [28]
    Lin H, Yan F, Hu C, Zheng Y, Sheng Y, Zhu W, Wang Z, Zheng H, and Wang K 2022 Nanoscale 14 2352

    Google Scholar

    [29]
    Kao I H, Muzzio R, Zhang H, Zhu M, Gobbo J, Yuan S, Weber D, Rao R, Li J, Edgar J H, Goldberger J E, Yan J, Mandrus D G, Hwang J, Cheng R, Katoch J, and Singh S 2022 Nat. Mater. 21 1029

    Google Scholar

    [30]
    Min K H, Lee D H, Choi S J, Lee I H, Seo J, Kim D W, Ko K T, Watanabe K, Taniguchi T, Ha D H, Kim C, Shim J H, Eom J, Kim J S, and Jung S 2022 Nat. Mater. 21 1144

    Google Scholar

    [31]
    Wang Z, Sapkota D, Taniguchi T, Watanabe K, Mandrus D, and Morpurgo A F 2018 Nano Lett. 18 4303

    Google Scholar

    [32]
    Li Z, Tang M, Huang J, Qin F, Ao L, Shen Z, Zhang C, Chen P, Bi X, Qiu C, Yu Z, Zhai K, Ideue T, Wang L, Liu Z, Tian Y, Iwasa Y, and Yuan H 2022 Adv. Mater. 34 2201209

    Google Scholar

    [33]
    Cao Y, Zhang X, Zhang X P, Yan F, Wang Z, Zhu W, Tan H, Golovach V N, Zheng H, and Wang K 2022 Phys. Rev. Appl. 17 L051001

    Google Scholar

    [34]
    Zhou H Y, Zhang Y G, and Zhao W S 2021 ACS Appl. Mater. Interfaces 13 1214

    Google Scholar

    [35]
    Zhang G, Guo F, Wu H, Wen X, Yang L, Jin W, Zhang W, and Chang H 2022 Nat. Commun. 13 5067

    Google Scholar

    [36]
    Gong K, Zhang L, Liu D P, Liu L, Zhu Y, Zhao Y H, and Guo H 2014 Nanotechnology 25 435201

    Google Scholar

    [37]
    Kumar A and Ahluwalia P K 2012 Eur. Phys. J. B 85 186

    Google Scholar

    [38]
    Pudasaini P R, Oyedele A, Zhang C, Stanford M G, Cross N, Wong A T, Hoffman A N, Xiao K, Duscher G, Mandrus D G, Ward T Z, and Rack P D 2018 Nano Res. 11 722

    Google Scholar

    [39]
    Bowen M, Cros V, Petroff F, Fert A, Martı B C, Costa-Krämer J L, Anguita J V, Cebollada A, Briones F, de Teresa J M, Morellón L, Ibarra M R, Güell F, Peiró F, and Cornet A 2001 Appl. Phys. Lett. 79 1655

    Google Scholar

    [40]
    Shi W, Lin M L, Tan Q H, Qiao X F, Zhang J, and Tan P H 2016 2D Mater. 3 025016

    Google Scholar

    [41]
    Miyazaki T and Tezuka N 1995 J. Magn. Magn. Mater. 139 L231

    Google Scholar

    [42]
    Tiusan C, Faure-Vincent J, Bellouard C, Hehn M, Jouguelet E, and Schuhl A 2004 Phys. Rev. Lett. 93 106602

    Google Scholar

    [43]
    Hu C, Yan F, Li Y, and Wang K 2021 Chin. Phys. B 30 097505

    Google Scholar

    [44]
    Dho J, Lee E K, Park J Y, and Hur N H 2005 J. Magn. Magn. Mater. 285 164

    Google Scholar

    [45]
    Žutić I, Fabian J, and Das S S 2004 Rev. Mod. Phys. 76 323

    Google Scholar

    [46]
    Wang X, Li D, Li Z, Wu C, Che C M, Chen G, and Cui X 2021 ACS Nano 15 16236

    Google Scholar

    [47]
    Bedoya-Pinto A, Ji J R, Pandeya A K, Gargiani P, Valvidares M, Sessi P, Taylor J M, Radu F, Chang K, and Parkin S S P 2021 Science 374 616

    Google Scholar

  • Related Articles

    [1]Jiao Xie, Jun-Lin Xiong, Bin Cheng, Shi-Jun Liang, Feng Miao. In-Memory Probabilistic Computing using Gate-tunable Layer Pseudospins in van der Waals Heterostructures [J]. Chin. Phys. Lett., 2025, 42(4): 040202. doi: 10.1088/0256-307X/42/4/040202
    [2]Xiaomin Zhang, Jian Wang, Wenkai Zhu, Jiaqian Zhang, Weihao Li, Jing Zhang, Kaiyou Wang. Giant Magneto-Optical Effect in van der Waals Room-Temperature Ferromagnet Fe3GaTe2 [J]. Chin. Phys. Lett., 2024, 41(6): 067503. doi: 10.1088/0256-307X/41/6/067503
    [3]WANG De-Hua. Dynamics of a Rydberg Hydrogen Atom in a Generalized van der Waals Potential and a Magnetic Field [J]. Chin. Phys. Lett., 2010, 27(2): 023201. doi: 10.1088/0256-307X/27/2/023201
    [4]ZHOU Shi-Qi. Phase Behaviour of Purely Repulsive Systems: Violation of Traditional van der Waals Picture [J]. Chin. Phys. Lett., 2008, 25(6): 2132-2135.
    [5]ZHAO Qian, WU Ping, LI Bao-Ling, LU Zun-Ming, JIANG En-Yong. Room-Temperature Ferromagnetism in Semiconducting TiO2-δ Nanoparticles [J]. Chin. Phys. Lett., 2008, 25(5): 1811-1814.
    [6]PENG Long, ZHANG Huai-Wu, WEN Qi-Ye, SONG Yuan-Qiang, SU Hua, John Q. Xiao. Origin of Room-Temperature Ferromagnetism for Cobalt-Doped ZnO Diluted Magnetic Semiconductor [J]. Chin. Phys. Lett., 2008, 25(4): 1438-1441.
    [7]LI Kang, CHAMOUN Nidal. Van der Waals interactions and Photoelectric Effect in Noncommutative Quantum Mechanics [J]. Chin. Phys. Lett., 2007, 24(5): 1183-1186.
    [8]LIU Nan, BAI Yi-Long, XIA Meng-Fen, KE Fu-Jiu. Combined Effect of Surface Tension, Gravity and van der Waals Force Induced by a Non-Contact Probe Tip on the Shape of Liquid Surface [J]. Chin. Phys. Lett., 2005, 22(8): 2012-2015.
    [9]ZHANG Wu-shou, LI Bo-zang. Magnetoresistance and Interlayer Exchange Coupling in Ferromagnetic/Nonmagnetic/Insulator (Semiconductor) /Ferromagnetic Tunnel Junctions [J]. Chin. Phys. Lett., 1998, 15(4): 296-298.
    [10]ZENG Xi-zhi. DETERMINATION OF THE SPIN COUPLING CONSTANTS IN THE 87Rb 129Xe VAN der WAALS MOLECULE [J]. Chin. Phys. Lett., 1985, 2(7): 325-328.
  • Other Related Supplements

  • Cited by

    Periodical cited type(107)

    1. Younis, M., Abdullah, M., Dai, S. et al. Magnetoresistance in 2D Magnetic Materials: From Fundamentals to Applications. Advanced Functional Materials, 2025, 35(11): 2417282. DOI:10.1002/adfm.202417282
    2. Zhang, L., He, M., Wang, X. et al. Bias voltage controlled inversions of tunneling magnetoresistance in van der Waals heterostructures Fe3GaTe2/hBN/Fe3GaTe2. Journal of Physics D: Applied Physics, 2025, 58(10): 105005. DOI:10.1088/1361-6463/ada44c
    3. Li, J.-W., Zhao, S.-B., Zhuang, L. et al. First-principles study of electronic and magnetic properties of self-intercalated van der Waals magnet Cr3Ge2Te6. Chinese Physics B, 2025, 34(3): 036301. DOI:10.1088/1674-1056/adab67
    4. Xue, J., Hu, C., Tian, R. et al. Anomalous Magnetization in a van der Waals Antiferromagnet/Ferromagnet CrCl3/Fe3GeTe2/CrCl3 Heterostructure. ACS Applied Electronic Materials, 2025, 7(4): 1565-1570. DOI:10.1021/acsaelm.4c02156
    5. Zhang, X.-Y., Song, P., Yao, S. et al. Enhanced magnetization jumps by GPa-level isostatic pressure in [α-Fe2O3]0.1[FeTiO3]0.9. Physica B: Condensed Matter, 2025. DOI:10.1016/j.physb.2024.416846
    6. Wang, L., Liu, S., MacManus-Driscoll, J.L. et al. Coupling between piezotronics and other physical phenomena. MRS Bulletin, 2025, 50(2): 174-180. DOI:10.1557/s43577-024-00834-2
    7. Hadke, S., Kang, M.-A., Sangwan, V.K. et al. Two-Dimensional Materials for Brain-Inspired Computing Hardware. Chemical Reviews, 2025, 125(2): 835-932. DOI:10.1021/acs.chemrev.4c00631
    8. Zhang, G., Wu, H., Jin, W. et al. Progress and challenges for two-dimensional spin-polarized quantum materials. Cell Reports Physical Science, 2025, 6(1): 102356. DOI:10.1016/j.xcrp.2024.102356
    9. Zhang, G., Wu, H., Yang, L. et al. Lattice Vibration, Raman Modes and Room-Temperature Spin-Phonon Coupling in Intrinsic Two-Dimensional van der Waals Ferromagnetic Fe3GaTe2. ACS Materials Letters, 2025. DOI:10.1021/acsmaterialslett.4c02526
    10. Jia, Z., Zhao, M., Chen, Q. et al. Spintronic Devices upon 2D Magnetic Materials and Heterojunctions. ACS Nano, 2025. DOI:10.1021/acsnano.4c14168
    11. He, K., Li, B., Nie, J. et al. Two-Dimensional Cr3Te4/WS2/Fe3GeTe2/WTe2 Magnetic Memory with Field-Free Switching and Low Power Consumption. Advanced Materials, 2025. DOI:10.1002/adma.202419939
    12. Zhu, W., Wang, K. Aharonov-Anandan phases in a van der Waals antiferromagnet CrPS4. Science Bulletin, 2025. DOI:10.1016/j.scib.2025.01.051
    13. Wu, H., Yang, L., Zhang, G. et al. Thermally-Stable Temperature-Independent Tunneling Magnetoresistance in all van der Waals Fe3GaTe2/GaSe/Fe3GaTe2 Magnetic Tunnel Junctions. Small Methods, 2025. DOI:10.1002/smtd.202401117
    14. Zhang, G., Wu, H., Yang, L. et al. Above-Room-Temperature Ferromagnetism Regulation in Two-Dimensional Heterostructures by van der Waals Interfacial Magnetochemistry. Journal of the American Chemical Society, 2024, 146(49): 34070-34079. DOI:10.1021/jacs.4c13391
    15. Ryu, J., Kajale, S.N., Sarkar, D. Van der Waals magnetic materials for current-induced control toward spintronic applications. MRS Communications, 2024, 14(6): 1113-1126. DOI:10.1557/s43579-024-00673-x
    16. Kajale, S.N., Nguyen, T., Chao, C.A. et al. Current-induced switching of a van der Waals ferromagnet at room temperature. Nature Communications, 2024, 15(1): 1485. DOI:10.1038/s41467-024-45586-4
    17. Li, Z., Zhang, H., Li, G. et al. Room-temperature sub-100 nm Néel-type skyrmions in non-stoichiometric van der Waals ferromagnet Fe3-xGaTe2 with ultrafast laser writability. Nature Communications, 2024, 15(1) DOI:10.1038/s41467-024-45310-2
    18. Zhu, W., Sun, J., Wang, Y. et al. Room-Temperature Magneto-Photoresponse in All-2D Optoelectronic Devices for In-Sensor Vision Systems. Advanced Materials, 2024, 36(47): 2403624. DOI:10.1002/adma.202403624
    19. Hao, Q., Cai, M., Dai, H. et al. All-in-One Magneto-optical Memory Arrays Based on a Two-Dimensional Ferromagnetic Metal. ACS Applied Materials and Interfaces, 2024, 16(45): 62429-62435. DOI:10.1021/acsami.4c15691
    20. Jia, Z., Zhao, M., Chen, Q. et al. Spin Transport Modulation of 2D Fe3O4 Nanosheets Driven by Verwey Phase Transition. Advanced Science, 2024, 11(41): 2405945. DOI:10.1002/advs.202405945
    21. Yu, Z.-M., Yang, X.-L., Zhao, X.-N. et al. Back-side stress to ease p-MOSFET degradation on e-MRAM chips. Chinese Physics B, 2024, 33(12): 128503. DOI:10.1088/1674-1056/ad7c2d
    22. Kim, W.K., Shin, Y.H., Kim, N. et al. Room-temperature ferromagnetism in semimetallic Co-intercalated MoTe2. Applied Surface Science, 2024. DOI:10.1016/j.apsusc.2024.160706
    23. Qu, Z., Huang, C., Wu, S. et al. Strong magnetoelectric coupling in a double transition metal dichalcogenide monolayer. Physical Review B, 2024, 110(16): L161408. DOI:10.1103/PhysRevB.110.L161408
    24. Zhang, J., Wang, Z., Li, Z. et al. Sub-THz High Spin Precession Frequency in van der Waals Ferromagnet Fe3GaTe2. Nano Letters, 2024, 24(39): 12204-12210. DOI:10.1021/acs.nanolett.4c03291
    25. Wang, T., Xu, Y., Liu, Y. et al. Centimeter-Scale Above-Room-Temperature Ferromagnetic Fe3GaTe2 Thin Films by Molecular Beam Epitaxy. Chinese Physics Letters, 2024, 41(10): 107502. DOI:10.1088/0256-307X/41/10/107502
    26. Dong, X., Shi, X., Qiao, D. et al. Large Tunneling Magnetoresistance and Perfect Spin Filtering Effect in van der Waals Cu/FeX2/h-BN/FeX2/Cu (X=Cl, Br, I) Magnetic Tunnel Junctions. Chinese Physics Letters, 2024, 41(10): 107501. DOI:10.1088/0256-307X/41/10/107501
    27. Zhu, W., Sun, J., Cheng, Y. et al. Photoresponsive Two-Dimensional Magnetic Junctions for Reconfigurable In-Memory Sensing. ACS Nano, 2024, 18(39): 27009-27015. DOI:10.1021/acsnano.4c09735
    28. Xin, N.. Magnetoresistance in two-dimensional materials and van der Waals heterostructures. 2D Materials, 2024, 11(4): 043004. DOI:10.1088/2053-1583/ad70c7
    29. Wu, H., Yang, L., Zhang, G. et al. Robust Magnetic Proximity Induced Anomalous Hall Effect in a Room Temperature van der Waals Ferromagnetic Semiconductor Based 2D Heterostructure. Small Methods, 2024, 8(9): 2301524. DOI:10.1002/smtd.202301524
    30. Zhang, G., Yu, J., Wu, H. et al. Above-room-temperature intrinsic ferromagnetism in ultrathin van der Waals crystal Fe3+xGaTe2. Applied Physics Letters, 2024, 125(12): 121901. DOI:10.1063/5.0230385
    31. Wu, R., Zhang, H., Ma, H. et al. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chemical Reviews, 2024, 124(17): 10112-10191. DOI:10.1021/acs.chemrev.4c00174
    32. Jin, W., Li, X., Zhang, G. et al. Tunable High-Temperature Tunneling Magnetoresistance in All-van der Waals Antiferromagnet/Semiconductor/Ferromagnet Junctions. Advanced Functional Materials, 2024, 34(37): 2402091. DOI:10.1002/adfm.202402091
    33. Liu, D., Pei, F., Wang, S. et al. Manipulation of Exchange Bias in Two-Dimensional van der Waals Ferromagnet Near Room Temperature. ACS Nano, 2024, 18(34): 23812-23822. DOI:10.1021/acsnano.4c09142
    34. Zeng, X., Zhang, L., Zhang, Y. et al. Spin valve effect in the van der Waals heterojunction of Fe3GeTe2/tellurene/Fe3GeTe2. Applied Physics Letters, 2024, 125(9): 092406. DOI:10.1063/5.0215304
    35. Cho, W., Kang, Y.-G., Cha, J. et al. Singular Hall Response from a Correlated Ferromagnetic Flat Nodal-Line Semimetal. Advanced Materials, 2024, 36(31): 2402040. DOI:10.1002/adma.202402040
    36. Deng, Y., Zhu, K., Wang, M. et al. Room-temperature spin-valve devices without spacer layers based on Fe3GaTe2 van der Waals homojunctions. Nanoscale, 2024, 16(33): 15793-15800. DOI:10.1039/d4nr01767f
    37. Wu, J.-B., Wu, H., Tan, P.-H. Magneto-Optical Interactions in Layered Magnets. Advanced Functional Materials, 2024, 34(30): 2312214. DOI:10.1002/adfm.202312214
    38. Jia, Z., Chen, Q., Wang, W. et al. Multi-Level Switching of Spin-Torque Ferromagnetic Resonance in 2D Magnetite. Advanced Science, 2024, 11(26): 2401944. DOI:10.1002/advs.202401944
    39. Ruiz, A.M., Esteras, D.L., López-Alcalá, D. et al. On the Origin of the Above-Room-Temperature Magnetism in the 2D van der Waals Ferromagnet Fe3GaTe2. Nano Letters, 2024, 24(26): 7886-7894. DOI:10.1021/acs.nanolett.4c01019
    40. Niu, W., Song, Q.-X., Chang, S.-Q. et al. Critical behavior of quasi-two-dimensional ferromagnet Cr1.04Te2. Chinese Physics B, 2024, 33(7): 077506. DOI:10.1088/1674-1056/ad4cd8
    41. Mishra, S., Park, I.K., Javaid, S. et al. Enhancement of interlayer exchange coupling via intercalation in 2D magnetic bilayers: towards high Curie temperature. Materials Horizons, 2024, 11(18): 4482-4492. DOI:10.1039/d4mh00135d
    42. Yu, J., Jin, W., Zhang, G. et al. Tuning the magnetic properties of van der Waals Fe3GaTe2 crystals by Co doping. Physical Chemistry Chemical Physics, 2024, 26(27): 18847-18853. DOI:10.1039/d4cp01573h
    43. Wang, J., Liu, Y., Lu, R. et al. Prediction of two-dimensional large-gap magnetic semiconductors in transition metal superhalogenides. Journal of Materials Chemistry C, 2024, 12(27): 10193-10199. DOI:10.1039/d4tc01220h
    44. Wen, L., Lu, M.-W., Chen, J.-L. et al. Transmission time and spin polarization for electron in magnetically confined semiconducotr nanostructure modulated by spin-orbit coupling | [电子在自旋-轨道耦合调制下磁受限半导体纳米结构中的传输时间及其自旋极化]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(11): 118504. DOI:10.7498/aps.73.20240285
    45. Yan, S., Tian, S., Fu, Y. et al. Highly Efficient Room-Temperature Nonvolatile Magnetic Switching by Current in Fe3GaTe2 Thin Flakes. Small, 2024, 20(23): 2311430. DOI:10.1002/smll.202311430
    46. Zhang, X., Wang, J., Zhu, W. et al. Giant Magneto-Optical Effect in van der Waals Room-Temperature Ferromagnet Fe3GaTe2. Chinese Physics Letters, 2024, 41(6): 067503. DOI:10.1088/0256-307X/41/6/067503
    47. Zhang, G., Wu, H., Yang, L. et al. Graphene-based spintronics. Applied Physics Reviews, 2024, 11(2): 021308. DOI:10.1063/5.0191362
    48. Pan, H., Singh, A.K., Zhang, C. et al. Room-temperature tunable tunneling magnetoresistance in Fe3GaTe2/WSe2/Fe3GaTe2 van der Waals heterostructures. InfoMat, 2024, 6(6): e12504. DOI:10.1002/inf2.12504
    49. Zhu, S., Lin, H., Zhu, W. et al. Voltage tunable sign inversion of magnetoresistance in van der Waals Fe3GeTe2/MoSe2/Fe3GeTe2 tunnel junctions. Applied Physics Letters, 2024, 124(22): 222401. DOI:10.1063/5.0202525
    50. Deng, L., Yin, X., Tong, J. et al. Writing and reading magnetization states via strain in Fe3GaTe2/h-BN/MnBi2Te4 junction. Journal of Applied Physics, 2024, 135(17): 174303. DOI:10.1063/5.0202687
    51. Cheng, D., Liu, J., Wei, B. Growth of Quasi-Two-Dimensional CrTe Nanoflakes and CrTe/Transition Metal Dichalcogenide Heterostructures. Nanomaterials, 2024, 14(10): 868. DOI:10.3390/nano14100868
    52. Li, Z., Zhang, X., Zhang, Y. First-principles study of perpendicular magnetic anisotropy of CrI3/In2Se3 Van der Waals heterostructure. Results in Physics, 2024. DOI:10.1016/j.rinp.2024.107692
    53. Manikandan, G., Dhanalakshmi, D., Manivel Raja, M. Simple solution processed spin switching in FeCo/Rubrene/NiFe spin valve device. Indian Journal of Physics, 2024, 98(5): 1655-1660. DOI:10.1007/s12648-023-02937-z
    54. Yan, S., Liu, Z., Li, S. et al. Layer-number parity-dependent oscillatory spin transport in β-Ga2O3 magnetic tunnel junctions. Applied Physics Letters, 2024, 124(15): 152405. DOI:10.1063/5.0189510
    55. Mohanty, S., Deb, P. Sign-flipping intrinsic anomalous Hall conductivity with Berry curvature tunability in a half-metallic ferromagnet NbSe2-VSe2 lateral heterostructure. Nanoscale, 2024, 16(19): 9447-9454. DOI:10.1039/d3nr06266j
    56. Liu, S., Hu, S., Cui, X. et al. Efficient Thermo-Spin Conversion in van der Waals Ferromagnet FeGaTe. Advanced Materials, 2024, 36(14): 2309776. DOI:10.1002/adma.202309776
    57. Kajale, S.N., Nguyen, T., Hung, N.T. et al. Field-free deterministic switching of all–van der Waals spin-orbit torque system above room temperature. Science Advances, 2024, 10(11): eadk8669. DOI:10.1126/sciadv.adk8669
    58. Hao, B., Guo, Y., Sun, W. et al. Room-temperature single-layer 2D van der Waals ferromagnetic-CrXY3 hosting skyrmions. Applied Physics Letters, 2024, 124(10): 102405. DOI:10.1063/5.0190339
    59. Marfoua, B., Hong, J. Highly efficient spin-orbit torque generation in bilayer WTe2/Fe3GaTe2 heterostructure. Materials Today Physics, 2024. DOI:10.1016/j.mtphys.2024.101378
    60. Xu, Z., Li, Z. Planar Fe:WS2/WS2/Fe:WS2 tunnel junction: Giant magnetoresistance and perfect spin filtering. Computational Materials Science, 2024. DOI:10.1016/j.commatsci.2024.112832
    61. Zhang, G., Wu, H., Yang, L. et al. Room-temperature Highly-Tunable Coercivity and Highly-Efficient Multi-States Magnetization Switching by Small Current in Single 2D Ferromagnet Fe3GaTe2. ACS Materials Letters, 2024, 6(2): 482-488. DOI:10.1021/acsmaterialslett.3c01090
    62. Li, M.-S., Li, H.-M., Liu, S. Synthesis Methods and Property Control of Two-Dimensional Magnetic Materials. Chinese Physics Letters, 2024, 41(2): 027501. DOI:10.1088/0256-307X/41/2/027501
    63. Kajale, S.N., Hanna, J., Jang, K. et al. Two-dimensional magnetic materials for spintronic applications. Nano Research, 2024, 17(2): 743-762. DOI:10.1007/s12274-024-6447-2
    64. Li, J., Zhang, X., Xiang, G. Tunable rectification and magnetoresistance behaviors of ferromagnetic pn diode based on (Fe, Al)-doped SiGe with enhanced room-temperature magnetization | [基于室温铁磁性的(Fe, Al)共掺杂SiGe铁磁pn二极管 的可调整流和磁阻特性]. Science China Materials, 2024, 67(2): 573-579. DOI:10.1007/s40843-023-2697-x
    65. Chen, Z., Yang, Y., Ying, T. et al. High-Tc Ferromagnetic Semiconductor in Thinned 3D Ising Ferromagnetic Metal Fe3GaTe2. Nano Letters, 2024, 24(3): 993-1000. DOI:10.1021/acs.nanolett.3c04462
    66. Papavasileiou, A.V., Menelaou, M., Sarkar, K.J. et al. Ferromagnetic Elements in Two-Dimensional Materials: 2D Magnets and Beyond. Advanced Functional Materials, 2024, 34(2): 2309046. DOI:10.1002/adfm.202309046
    67. Liu, E.-K.. Coupling between magnetism and topology: From fundamental physics to topological magneto-electronics | [磁序与拓扑的耦合: 从基础物理到拓扑磁电子学]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(1): 017103. DOI:10.7498/aps.73.20231711
    68. Jiang, L.-X., Li, Q.-C., Zhang, X. et al. SPECIAL TOPIC—Two-dimensional magnetism and topological spin physics Spintronic devices based on topological and two-dimensional materials | [基于拓扑/二维量子材料的自旋电子器件]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(1): 017505. DOI:10.7498/aps.73.20231166
    69. Liu, J., Li, Z., Wu, D. et al. A Compact Piezo-Drive Rotatable Scanning Tunneling Microscope in a 12 T Cryogen-Free Magnet. Microscopy Research and Technique, 2024. DOI:10.1002/jemt.24758
    70. Huang, H., Zhang, Z., Yu, C. et al. Temperature-Dependent Spin Reorientation and Versatile Spin Valve Effect in Fe4GeTe2. ACS Applied Electronic Materials, 2024. DOI:10.1021/acsaelm.4c00939
    71. Mi, M.-J., Yu, L.-X., Xiao, H. et al. Tuning magnetic properties of two-dimensional antiferromagnetic MPX3 by organic cations intercalation | [有机阳离子插层调控二维反铁磁 MPX3 磁性能]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(5): 057501. DOI:10.7498/aps.73.20232010
    72. Wang, H., Wen, Y., Zeng, H. et al. 2D Ferroic Materials for Nonvolatile Memory Applications. Advanced Materials, 2024. DOI:10.1002/adma.202305044
    73. Zhang, Y., Zhao, K., Zheng, S. et al. Glovebox-assisted magnetic force microscope for studying air-sensitive samples in a cryogen-free magnet. Review of Scientific Instruments, 2024, 95(1): 013701. DOI:10.1063/5.0186587
    74. Elahi, E., Khan, M.A., Suleman, M. et al. Recent innovations in 2D magnetic materials and their potential applications in the modern era. Materials Today, 2024. DOI:10.1016/j.mattod.2023.11.008
    75. Li, W., Zhu, W., Zhang, G. et al. Room-Temperature van der Waals Ferromagnet Switching by Spin-Orbit Torques. Advanced Materials, 2023, 35(51): 2303688. DOI:10.1002/adma.202303688
    76. Fan, X.-Z., Li, Y.-L., Wu, Y. et al. Magnetism and spin transport properties of two-dimensional magnetic semiconductor kagome lattice Nb3Cl8 monolayer | [二维磁性半导体笼目晶格 Nb3Cl8 单层的磁性及自旋电子输运性质]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(24): 247503. DOI:10.7498/aps.72.20231163
    77. Yun, C., Guo, H., Lin, Z. et al. Efficient current-induced spin torques and field-free magnetization switching in a room-temperature van der Waals magnet. Science Advances, 2023, 9(49): eadj3955. DOI:10.1126/sciadv.adj3955
    78. Mi, M., Xiao, H., Yu, L. et al. Two-dimensional magnetic materials for spintronic devices. Materials Today Nano, 2023. DOI:10.1016/j.mtnano.2023.100408
    79. Ren, H., Xiang, G. Recent advances in synthesis of two-dimensional non-van der Waals ferromagnetic materials. Materials Today Electronics, 2023. DOI:10.1016/j.mtelec.2023.100074
    80. Shi, S., Wang, X., Zhao, Y. et al. Recent progress in strong spin-orbit coupling van der Waals materials and their heterostructures for spintronic applications. Materials Today Electronics, 2023. DOI:10.1016/j.mtelec.2023.100060
    81. Zhu, W., Zhu, Y., Zhou, T. et al. Large and tunable magnetoresistance in van der Waals ferromagnet/semiconductor junctions. Nature Communications, 2023, 14(1): 5371. DOI:10.1038/s41467-023-41077-0
    82. Chen, Z., Deng, X., Zhang, S. et al. Comparative coherence between layered and traditional semiconductors: unique opportunities for heterogeneous integration. International Journal of Extreme Manufacturing, 2023, 5(4): 042001. DOI:10.1088/2631-7990/ace501
    83. Han, J., Zhou, D., Yang, W. et al. Resonant tunneling induced large magnetoresistance in vertical van der Waals magnetic tunneling junctions based on type-II spin-gapless semiconductor VSi2P4. Journal of Materials Chemistry C, 2023, 12(2): 696-705. DOI:10.1039/d3tc03040g
    84. Pan, Z.-C., Li, D., Ye, X.-G. et al. Room-temperature orbit-transfer torque enabling van der Waals magnetoresistive memories. Science Bulletin, 2023, 68(22): 2743-2749. DOI:10.1016/j.scib.2023.10.008
    85. Chen, X., Zhang, X., Xiang, G. Recent advances in two-dimensional intrinsic ferromagnetic materials Fe3X(X=Ge and Ga)Te2 and their heterostructures for spintronics. Nanoscale, 2023, 16(2): 527-554. DOI:10.1039/d3nr04977a
    86. Zeng, X., Ye, G., Yang, F. et al. Tunable asymmetric magnetoresistance in an Fe3GeTe2/graphite/Fe3GeTe2 lateral spin valve. Nanoscale, 2023, 15(48): 19480-19485. DOI:10.1039/d3nr04069k
    87. Bhattacharya, S., Ohto, T., Tada, H. et al. Interfacial negative magnetization in Ni encapsulated layer-tunable nested MoS2 nanostructure with robust memory applications. Nanoscale Advances, 2023, 6(4): 1091-1105. DOI:10.1039/d3na00343d
    88. Zhang, G., Luo, Q., Wen, X. et al. Giant 2D Skyrmion Topological Hall Effect with Ultrawide Temperature Window and Low-Current Manipulation in 2D Room-Temperature Ferromagnetic Crystals. Chinese Physics Letters, 2023, 40(11): 117501. DOI:10.1088/0256-307X/40/11/117501
    89. Han, L., Cheng, T., Ding, Y. et al. Recent progress in synthesis and properties of 2D room-temperature ferromagnetic materials. Science China Chemistry, 2023, 66(11): 3054-3069. DOI:10.1007/s11426-023-1767-2
    90. Liu, P., Zhang, Y., Li, K. et al. Recent advances in 2D van der Waals magnets: Detection, modulation, and applications. iScience, 2023, 26(9): 107584. DOI:10.1016/j.isci.2023.107584
    91. Zhang, G., Yu, J., Wu, H. et al. Field-free room-temperature modulation of magnetic bubble and stripe domains in 2D van der Waals ferromagnetic Fe3GaTe2. Applied Physics Letters, 2023, 123(10): 101901. DOI:10.1063/5.0159994
    92. Victor, R.T., Marroquin, J.F.R., Safeer, S.H. et al. Automated mechanical exfoliation technique: a spin pumping study in YIG/TMD heterostructures. Nanoscale Horizons, 2023, 8(11): 1568-1576. DOI:10.1039/d3nh00137g
    93. Wu, Y., Zhang, Z., Zhang, N. et al. Micromagnetic simulation for random magnetization switching process of a spin–orbit true random number generator. Results in Physics, 2023. DOI:10.1016/j.rinp.2023.106825
    94. Pan, H., Zhang, C., Shi, J. et al. Room-Temperature Lateral Spin Valve in Graphene/Fe3GaTe2 van der Waals Heterostructures. ACS Materials Letters, 2023, 5(8): 2226-2232. DOI:10.1021/acsmaterialslett.3c00510
    95. Jin, W., Zhang, G., Wu, H. et al. Room-Temperature and Tunable Tunneling Magnetoresistance in Fe3GaTe2-Based 2D van der Waals Heterojunctions. ACS Applied Materials and Interfaces, 2023, 15(30): 36519-36526. DOI:10.1021/acsami.3c06167
    96. Dong, X., Jia, X., Yan, Z. et al. Spin Transport Properties of MnBi2Te4-Based Magnetic Tunnel Junctions. Chinese Physics Letters, 2023, 40(8): 087301. DOI:10.1088/0256-307X/40/8/087301
    97. Hu, L., Han, J., Gao, G. Layer- and barrier-dependent spin filtering effect and high tunnel magnetoresistance in FeCl2 based van der Waals junctions. Applied Physics Letters, 2023, 123(5): 052401. DOI:10.1063/5.0153195
    98. Dou, P., Zhang, J., Guo, Y. et al. Deterministic Magnetization Switching via Tunable Noncollinear Spin Configurations in Canted Magnets. Nano Letters, 2023, 23(14): 6449-6457. DOI:10.1021/acs.nanolett.3c01192
    99. You, J.-Y., Dong, X.-J., Gu, B. et al. Possible Room-Temperature Ferromagnetic Semiconductors. Chinese Physics Letters, 2023, 40(6): 067502. DOI:10.1088/0256-307X/40/6/067502
    100. Jin, W., Zhang, G., Wu, H. et al. Development of Intrinsic Room-Temperature 2D Ferromagnetic Crystals for 2D Spintronics. Chinese Physics Letters, 2023, 40(5): 057301. DOI:10.1088/0256-307X/40/5/057301
    101. Ji, Z., Huang, T., Li, Y. et al. Magnetic Phase Transition in Strained Two-Dimensional CrSeTe Monolayer. Chinese Physics Letters, 2023, 40(5): 057701. DOI:10.1088/0256-307X/40/5/057701
    102. Lan, G., Xu, H., Zhang, Y. et al. Giant Tunneling Magnetoresistance in Spin-Filter Magnetic Tunnel Junctions Based on van der Waals A-Type Antiferromagnet CrSBr. Chinese Physics Letters, 2023, 40(5): 058501. DOI:10.1088/0256-307X/40/5/058501
    103. Wu, Q., Cui, Z., Zhu, M. et al. Exchange bias controlled antisymmetric-symmetric magnetoresistances in Fe3GeTe2/graphite/Fe3GeTe2 trilayer. 2D Materials, 2023, 10(2): 025009. DOI:10.1088/2053-1583/acb069
    104. Geng, T., Wang, J., Meng, W. et al. A cryogen-free superconducting magnet based scanning tunneling microscope for liquid phase measurement. Review of Scientific Instruments, 2023, 94(3): 033705. DOI:10.1063/5.0121761
    105. He, X., Zhang, C., Zheng, D. et al. Nonlocal Spin Valves Based on Graphene/Fe3GeTe2 van der Waals Heterostructures. ACS Applied Materials and Interfaces, 2023, 15(7): 9649-9655. DOI:10.1021/acsami.2c21918
    106. Jin, W., Zhang, G., Wu, H. et al. Room-temperature spin-valve devices based on Fe3GaTe2/MoS2/Fe3GaTe2 2D van der Waals heterojunctions. Nanoscale, 2023, 15(11): 5371-5378. DOI:10.1039/d2nr06886a
    107. Yin, H., Zhang, P., Jin, W. et al. Fe3GaTe2/MoSe2 ferromagnet/semiconductor 2D van der Waals heterojunction for room-temperature spin-valve devices. CrystEngComm, 2023, 25(9): 1339-1346. DOI:10.1039/d2ce01695h

    Other cited types(0)

Catalog

    Article views (857) PDF downloads (1225) Cited by(107)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return