[1] | Ashcroft N W 2004 Phys. Rev. Lett. 92 187002 | Hydrogen Dominant Metallic Alloys: High Temperature Superconductors?
[2] | Gao G, Oganov A R, Bergara A et al. 2008 Phys. Rev. Lett. 101 107002 | Superconducting High Pressure Phase of Germane
[3] | Kim D Y, Scheicher R H, and Ahuja R 2009 Phys. Rev. Lett. 103 077002 | Predicted High-Temperature Superconducting State in the Hydrogen-Dense Transition-Metal Hydride at 40 K and 17.7 GPa
[4] | Drozdov A, Eremets M, Troyan I, Ksenofontov V, and Shylin S 2015 Nature 525 73 | Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system
[5] | Li X F and Peng F 2017 Lnorg. Chem. 56 13759 | Superconductivity of Pressure-Stabilized Vanadium Hydrides
[6] | Liu H Y, Naumov I I, Hoffmann R, Ashcroft N W, and Hemley R J 2017 Proc. Natl. Acad. Sci. USA 114 6990 | Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure
[7] | Somayazulu M, Ahart M, Mishra A K et al. 2019 Phys. Rev. Lett. 122 027001 | Evidence for Superconductivity above 260 K in Lanthanum Superhydride at Megabar Pressures
[8] | Drozdov A P, Kong P P, Minkov V S et al. 2019 Nature 569 528 | Superconductivity at 250 K in lanthanum hydride under high pressures
[9] | Hao S, Zhang Z H, Cui T, Pickard C J, Kresin V Z, and Duan D F 2021 Chin. Phys. Lett. 38 107401 | High Tc Superconductivity in Heavy Rare Earth Hydrides
[10] | Peng F, Sun Y, Pickard C J et al. 2017 Phys. Rev. Lett. 119 107001 | Hydrogen Clathrate Structures in Rare Earth Hydrides at High Pressures: Possible Route to Room-Temperature Superconductivity
[11] | Sun Y, Lv J, Xie Y, Liu H, and Ma Y 2019 Phys. Rev. Lett. 123 097001 | Route to a Superconducting Phase above Room Temperature in Electron-Doped Hydride Compounds under High Pressure
[12] | Yang L, Peng S M, Long X G et al. 2010 J. Appl. Phys. 107 054903 | Ab initio study of intrinsic, H, and He point defects in hcp-Er
[13] | Wixom R R, Browning J F, Snow C S, Schultz P, and Jennison D R 2008 J. Appl. Phys. 103 123708 | First principles site occupation and migration of hydrogen, helium, and oxygen in β-phase erbium hydride
[14] | Bonnet J and Daou J 1977 J. Appl. Phys. 48 964 | Rare‐earth dihydride compounds: Lattice thermal expansion and investigation of the thermal dissociation
[15] | Hou P G, Tian F B, Li D et al. 2014 J. Chem. Phys. 141 054703 | High-pressure phase transition of MH3 (M: Er, Ho)
[16] | Kuzovnikov M A, Eremets M I, Drozdov A P, and Tkacz M 2017 Solid State Commun. 263 23 | Pressure-induced metallization in Erbium trihydride
[17] | Gegenwart P, Si Q, and Steglich F 2008 Nat. Phys. 4 186 | Quantum criticality in heavy-fermion metals
[18] | Ikeda H, Suzuki M T, and Arita R 2015 Phys. Rev. Lett. 114 147003 | Emergent Loop-Nodal -Wave Superconductivity in : Similarities to the Iron-Based Superconductors
[19] | Nakai Y, Iye T, Kitagawa S et al. 2013 Phys. Rev. B 87 174507 | Normal-state spin dynamics in the iron-pnictide superconductors BaFe (As P ) and Ba(Fe Co ) As probed with NMR measurements
[20] | Pines D 2013 J. Phys. Chem. B 117 13145 | Finding New Superconductors: The Spin-Fluctuation Gateway to High Tc and Possible Room Temperature Superconductivity
[21] | Tôru M and Kazuo U 2003 Rep. Prog. Phys. 66 1299 | Antiferromagnetic spin fluctuation and superconductivity
[22] | Anisimov V I, Zaanen J, and Andersen O K 1991 Phys. Rev. B 44 943 | Band theory and Mott insulators: Hubbard U instead of Stoner I
[23] | Dudarev S L, Botton G A, Savrasov S Y, Humphreys C J, and Sutton A P 1998 Phys. Rev. B 57 1505 | Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study
[24] | Cococcioni M and de Gironcoli S 2005 Phys. Rev. B 71 035105 | Linear response approach to the calculation of the effective interaction parameters in the method
[25] | Si Q M and Paschen S 2013 Phys. Status Solidi B 250 425 | Quantum phase transitions in heavy fermion metals and Kondo insulators
[26] | Segall M, Lindan Philip J D, Probert M J et al. 2002 J. Phys.: Condens. Matter 14 2717 | First-principles simulation: ideas, illustrations and the CASTEP code
[27] | Perdew J P, Chevary J A, Vosko S H et al. 1992 Phys. Rev. B 46 6671 | Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
[28] | Xu H X, Lee D, Sinnott S B et al. 2009 Phys. Rev. B 80 144104 | Structure and energetics of Er defects in from first-principles and thermodynamic calculations
[29] | Montanari B and Harrison N M 2002 Chem. Phys. Lett. 364 528 | Lattice dynamics of TiO2 rutile: influence of gradient corrections in density functional calculations
[30] | Vajda P and Daou J 1994 Phys. Rev. B 49 3275 | Magnetic and metal-semiconductor transitions in ordered and disordered ErH(D
[31] | Biasini M, Ferro G, Kontrym-Sznajd G, and Czopnik A 2002 Phys. Rev. B 66 075126 | Fermi surface nesting and magnetic structure of
[32] | Kittel C 1996 Introduction to Solid State Physics (New Jersey: John Wiley & Sons Inc.) |
[33] | Hoshino S and Kuramoto Y 2013 Phys. Rev. Lett. 111 026401 | Itinerant Versus Localized Heavy-Electron Magnetism
[34] | Baroni S, de Gironcoli S, Dal C A, and Giannozzi P 2001 Rev. Mod. Phys. 73 515 | Phonons and related crystal properties from density-functional perturbation theory
[35] | Settai R, Takeuchi T, and Ōnuki Y 2007 J. Phys. Soc. Jpn. 76 051003 | Recent Advances in Ce-Based Heavy-Fermion Superconductivity and Fermi Surface Properties
[36] | Kittaka S, Aoki Y, Shimura Y et al. 2014 Phys. Rev. Lett. 112 067002 | Multiband Superconductivity with Unexpected Deficiency of Nodal Quasiparticles in
[37] | Zhou Y, Wu Q, Rosa Priscila F S et al. 2017 Sci. Bull. 62 1439 | Quantum phase transition and destruction of Kondo effect in pressurized SmB6
[38] | See Supplemental Material for supporting information of the hypotheses of superconductivity of ErH$_{2}$ at 15 and 20 GPa. |
[39] | Feng D and Jin G J 2012 Condensed Matter Physics (Beijing: Higher Education Press) vol 1 pp 503–524 (in Chinese) |
[40] | Subedi A, Zhang L, Singh D J, and Du M H 2008 Phys. Rev. B 78 134514 | Density functional study of FeS, FeSe, and FeTe: Electronic structure, magnetism, phonons, and superconductivity
[41] | Chen G F, Li Z, Wu D et al. 2008 Phys. Rev. Lett. 100 247002 | Superconductivity at 41 K and Its Competition with Spin-Density-Wave Instability in Layered
[42] | Sun H H, Zhang K W, Hu L H et al. 2016 Phys. Rev. Lett. 116 257003 | Majorana Zero Mode Detected with Spin Selective Andreev Reflection in the Vortex of a Topological Superconductor
[43] | Ran S, Eckberg C, Ding Q P et al. 2019 Science 365 684 | Nearly ferromagnetic spin-triplet superconductivity