[1] | Tsukazaki A, Ohtomo A, Kita T, Ohno Y, Ohno H, and Kawasaki M J S 2007 Science 315 1388 | Quantum Hall Effect in Polar Oxide Heterostructures
[2] | Knap W, Fal'ko V, Frayssinet E et al. 2004 J. Phys.: Condens. Matter. 16 3421 | Spin and interaction effects in Shubnikov–de Haas oscillations and the quantum Hall effect in GaN/AlGaN heterostructures
[3] | Efros A 1988 Solid State Commun. 67 1019 | Non-linear screening and the background density of 2DEG states in magnetic field
[4] | Ohtomo A and Hwang H 2004 Nature 427 423 | A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface
[5] | Betancourt J, Paudel T R, Tsymbal E Y, and Velev J P 2017 Phys. Rev. B 96 045113 | Spin-polarized two-dimensional electron gas at interfaces: Insight from first-principles calculations
[6] | Ariando A, Wang X, Baskaran G et al. 2011 Nat. Commun. 2 188 | Electronic phase separation at the LaAlO3/SrTiO3 interface
[7] | Xie Y W, Bell C, Hikita Y, Harashima S, Hwang H Y 2013 Adv. Mater. 25 4735 | Enhancing Electron Mobility at the LaAlO3 /SrTiO3 Interface by Surface Control
[8] | Paudel T R and Tsymbal E Y 2017 Phys. Rev. B 96 245423 | Prediction of a mobile two-dimensional electron gas at the (001) interface
[9] | Fang L, Chen C, Yang Y et al. 2019 Phys. Chem. Chem. Phys. 21 8046 | First-principles studies of a two-dimensional electron gas at the interface of polar/polar LaAlO3 /KNbO3 superlattices
[10] | Gariglio S, Reyren N, Caviglia A, and Triscone J M 2009 J. Phys.: Condens. Matter. 21 164213 | Superconductivity at the LaAlO3 /SrTiO3 interface
[11] | Weng Y K, Niu W, Huang X, An M, and Dong S 2021 Phys. Rev. B 103 214101 | Ferroelectric control of a spin-polarized two-dimensional electron gas
[12] | Cheng J L, Nazir S, and Yang K S 2016 ACS Appl. Mater. Inter. 8 31959 | First-Principles Prediction of Two-Dimensional Electron Gas Driven by Polarization Discontinuity in Nonpolar/Nonpolar AHfO3 /SrTiO3 (A = Ca, Sr, and Ba) Heterostructures
[13] | Chen Y, Bovet N, Trier F et al. 2013 Nat. Commun. 4 1371 | A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3
[14] | Cao C, Chen S, Deng J et al. 2022 Chin. Phys. Lett. 39 047301 | Two-Dimensional Electron Gas with High Mobility Forming at BaO/SrTiO3 Interface
[15] | Novoselov K S, Geim A K, Morozov S V et al. 2004 Science 306 666 | Electric Field Effect in Atomically Thin Carbon Films
[16] | Anichini C, Czepa W, Pakulski D, Aliprandi A, Ciesielski A, and Samorì P 2018 Chem. Soc. Rev. 47 4860 | Chemical sensing with 2D materials
[17] | Mir S H, Yadav V K, and Singh J K 2020 ACS Omega 5 14203 | Recent Advances in the Carrier Mobility of Two-Dimensional Materials: A Theoretical Perspective
[18] | Sohier T, Gibertini M, Campi D, Pizzi G, and Marzari N 2019 Nano Lett. 19 3723 | Valley-Engineering Mobilities in Two-Dimensional Materials
[19] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | Topological insulators and superconductors
[20] | Hong Y L, Liu Z, Wang L et al. 2020 Science 369 670 | Chemical vapor deposition of layered two-dimensional MoSi2 N4 materials
[21] | Wang L, Shi Y, Liu M et al. 2020 arXiv:2008.02981 [cond-mat.mtrl-sci] | Structure-driven intercalated architecture of septuple-atomic-layer $MA_2Z_4$ family with diverse properties from semiconductor to topological insulator to Ising superconductor
[22] | Guo S D, Mu W Q, Zhu Y T, Han R Y, and Ren W C 2021 J. Mater. Chem. C 9 2464 | Predicted septuple-atomic-layer Janus MSiGeN 4 (M = Mo and W) monolayers with Rashba spin splitting and high electron carrier mobilities
[23] | Bafekry A, Faraji M, Abdollahzadeh A et al. 2021 New J. Chem. 45 8291 | A van der Waals heterostructure of MoS2 /MoSi2 N4 : a first-principles study
[24] | Zeng J, Xu L, Yang Y et al. 2021 Phys. Chem. Chem. Phys. 23 8318 | Boosting the photocatalytic hydrogen evolution performance of monolayer C2 N coupled with MoSi2 N4 : density-functional theory calculations
[25] | Ai H, Liu D, Geng J, Wang S, Lo K H, and Pan H 2021 Phys. Chem. Chem. Phys. 23 3144 | Theoretical evidence of the spin–valley coupling and valley polarization in two-dimensional MoSi2 X4 (X = N, P, and As)
[26] | Cui Q, Zhu Y, Liang J, Cui P, and Yang H 2021 Phys. Rev. B 103 085421 | Spin-valley coupling in a two-dimensional monolayer
[27] | Binh N T, Nguyen C Q, Vu T V, and Nguyen C V 2021 J. Phys. Chem. Lett. 12 3934 | Interfacial Electronic Properties and Tunable Contact Types in Graphene/Janus MoGeSiN4 Heterostructures
[28] | Pham K D, Nguyen C Q, Nguyen C, Cuong P V, and Hieu N V 2021 New J. Chem. 45 5509 | Two-dimensional van der Waals graphene/transition metal nitride heterostructures as promising high-performance nanodevices
[29] | Bafekry A, Faraji M, Fadlallah M M et al. 2021 Appl. Surf. Sci. 559 149862 | Tunable electronic and magnetic properties of MoSi2N4 monolayer via vacancy defects, atomic adsorption and atomic doping
[30] | Bian Y T, Liu G H, Qian S H, Ding X X, and Liu H X 2020 arXiv:2012.04162 [cond-mat.mtrl-sci] | Effect of O-doping or N-vacancy on the structural, electronic and magnetic properties of MoSi2N4 monolayer
[31] | Bafekry A, Stampfl C, Naseri M et al. 2021 J. Appl. Phys. 129 155103 | Effect of electric field and vertical strain on the electro-optical properties of the MoSi2 N4 bilayer: A first-principles calculation
[32] | Guo X S and Guo S D 2020 arXiv:2008.08747 [cond-mat.mtrl-sci] | Tuning transport coefficients of monolayer $\mathrm{MoSi_2N_4}$ with biaxial strain
[33] | Wu Q, Cao L, Ang Y S, and Ang L K 2021 Appl. Phys. Lett. 118 113102 | Semiconductor-to-metal transition in bilayer MoSi2 N4 and WSi2 N4 with strain and electric field
[34] | Blöchl P E 1994 Phys. Rev. B 50 17953 | Projector augmented-wave method
[35] | Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 | Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
[36] | Perdew J P, Chevary J A, Vosko S H et al. 1992 Phys. Rev. B 46 6671 | Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation
[37] | Dion M, Rydberg H, Schröder E, Langreth D C, and Lundqvist B I 2004 Phys. Rev. Lett. 92 246401 | Van der Waals Density Functional for General Geometries
[38] | Henkelman G, Arnaldsson A, and Jónsson H 2006 Comput. Mater. Sci. 36 354 | A fast and robust algorithm for Bader decomposition of charge density
[39] | Alfè D 2009 Comput. Phys. Commun. 180 2622 | PHON: A program to calculate phonons using the small displacement method
[40] | Wang Z and Zhou G 2019 J. Phys. Chem. C. 124 167 | Lattice-Strain Control of Flexible Janus Indium Chalcogenide Monolayers for Photocatalytic Water Splitting
[41] | Zólyomi V, Drummond N, and Fal'Ko V 2014 Phys. Rev. B 89 205416 | Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations
[42] | Marschall R 2014 Adv. Funct. Mater. 24 2421 | Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity
[43] | Yang J, Zhao L, Shi-Qi L et al. 2021 Nanoscale 13 5479 | Accurate electronic properties and non-linear optical response of two-dimensional MA2Z4
[44] | MacNeill D, Heikes C, Mak K F et al. 2015 Phys. Rev. Lett. 114 037401 | Breaking of Valley Degeneracy by Magnetic Field in Monolayer
[45] | Aivazian G, Gong Z, Jones A M et al. 2015 Nat. Phys. 11 148 | Magnetic control of valley pseudospin in monolayer WSe2
[46] | Hu T, Zhao G, Gao H et al. 2020 Phys. Rev. B 101 125401 | Manipulation of valley pseudospin in heterostructures by the magnetic proximity effect
[47] | Rani D, Bainsla L, Alam A, and Suresh K 2020 J. Appl. Phys. 128 220902 | Spin-gapless semiconductors: Fundamental and applied aspects
[48] | Gao S, Yang L, and Spataru C D 2017 Nano Lett. 17 7809 | Interlayer Coupling and Gate-Tunable Excitons in Transition Metal Dichalcogenide Heterostructures
[49] | He J, Hummer K, and Franchini C 2014 Phys. Rev. B 89 075409 | Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides , , , and
[50] | Neugebauer J and Scheffler M 1992 Phys. Rev. B 46 16067 | Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al(111)