[1] | Aspelmeyer M, Kippenberg T J, and Marquardt F 2014 Rev. Mod. Phys. 86 1391 | Cavity optomechanics
[2] | Metcalfe M 2014 Appl. Phys. Rev. 1 031105 | Applications of cavity optomechanics
[3] | Arcizet O, Cohadon P F, Briant T, Pinard M, Heidmann A, Mackowski J M, Michel C, Pinard L, Français O, and Rousseau L 2006 Phys. Rev. Lett. 97 133601 | High-Sensitivity Optical Monitoring of a Micromechanical Resonator with a Quantum-Limited Optomechanical Sensor
[4] | Gavartin E, Verlot P, and Kippenberg T J 2012 Nat. Nanotechnol. 7 509 | A hybrid on-chip optomechanical transducer for ultrasensitive force measurements
[5] | Rashid M, Toros̈ M, Setter A, and Ulbricht H 2018 Phys. Rev. Lett. 121 253601 | Precession Motion in Levitated Optomechanics
[6] | Zhao W, Zhang S D, Miranowicz A, Jing H 2020 Sci. Chin. Phys. Mech. Astron. 63 224211 | Weak-force sensing with squeezed optomechanics
[7] | Bagci T, Simonsen A, Schmid S, Villanueva L G, Zeuthen E, Appel J, Taylor J M, Sørensen A, Usami K, Schliesser A, and Polzik E S 2014 Nature 507 81 | Optical detection of radio waves through a nanomechanical transducer
[8] | Lecocq F, Clark J B, Simmonds R W, Aumentado J, and Teufel J D 2016 Phys. Rev. Lett. 116 043601 | Mechanically Mediated Microwave Frequency Conversion in the Quantum Regime
[9] | Grudinin I S, Lee H, Painter O, and Vahala K J 2010 Phys. Rev. Lett. 104 083901 | Phonon Laser Action in a Tunable Two-Level System
[10] | Jing H, Özdemir Ş K, Lü X Y, Zhang J, Yang L, and Nori F 2014 Phys. Rev. Lett. 113 053604 | -Symmetric Phonon Laser
[11] | Kim S, Xu X, Taylor J M, and Bahl G 2017 Nat. Commun. 8 205 | Dynamically induced robust phonon transport and chiral cooling in an optomechanical system
[12] | Zhang J, Peng B, Özdemir Ş K, Pichler K, Krimer D O, Zhao G, Nori F, Liu Y X, Rotter S, and Yang L 2018 Nat. Photon. 12 479 | A phonon laser operating at an exceptional point
[13] | Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, and Schwab K C 2015 Science 349 952 | Quantum squeezing of motion in a mechanical resonator
[14] | Riedinger R, Hong S, Norte R A, Slater J A, Shang J, Krause A G, Anant V, Aspelmeyer M, and Gröblacher S 2016 Nature 530 313 | Non-classical correlations between single photons and phonons from a mechanical oscillator
[15] | Weis S, Rivière R, Deléglise S, Gavartin E, Arcizet O, Schliesser A, and Kippenberg T J 2010 Science 330 1520 | Optomechanically Induced Transparency
[16] | Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, and Painter O 2011 Nature 472 69 | Electromagnetically induced transparency and slow light with optomechanics
[17] | Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, and Kippenberg T J 2013 Nat. Phys. 9 179 | Slowing, advancing and switching of microwave signals using circuit nanoelectromechanics
[18] | Kronwald A and Marquardt F 2013 Phys. Rev. Lett. 111 133601 | Optomechanically Induced Transparency in the Nonlinear Quantum Regime
[19] | Jing H, Özdemir Ş K, Geng Z, Zhang J, Lü X Y, Peng B, Yang L, and Nori F 2015 Sci. Rep. 5 9663 | Optomechanically-induced transparency in parity-time-symmetric microresonators
[20] | Shen Z, Dong C H, Chen Y, Xiao Y F, Sun F W, and Guo G C 2016 Opt. Lett. 41 1249 | Compensation of the Kerr effect for transient optomechanically induced transparency in a silica microsphere
[21] | Lü H, Wang C Q, Yang L, and Jing H 2018 Phys. Rev. Appl. 10 014006 | Optomechanically Induced Transparency at Exceptional Points
[22] | Zhang H, Saif F, Jiao Y, and Jing H 2018 Opt. Express 26 25199 | Loss-induced transparency in optomechanics
[23] | Lu T X, Jiao Y F, Zhang H L, Saif F, and Jing H 2019 Phys. Rev. A 100 013813 | Selective and switchable optical amplification with mechanical driven oscillators
[24] | Bodiya T, Sudhir V, Wipf C, Smith N, Buikema A, Kontos A, Yu H, and Mavalvala N 2019 Phys. Rev. A 100 013853 | Sub-hertz optomechanically induced transparency with a kilogram-scale mechanical oscillator
[25] | Xiong H, Si L G, Zheng A S, Yang X, and Wu Y 2012 Phys. Rev. A 86 013815 | Higher-order sidebands in optomechanically induced transparency
[26] | Jiao Y, Lü H, Qian J, Li Y, and Jing H 2016 New J. Phys. 18 083034 | Nonlinear optomechanics with gain and loss: amplifying higher-order sideband and group delay
[27] | Fan L, Fong K Y, Poot M, and Tang H X 2015 Nat. Commun. 6 5850 | Cascaded optical transparency in multimode-cavity optomechanical systems
[28] | Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, and Dong C H 2016 Nat. Photon. 10 657 | Experimental realization of optomechanically induced non-reciprocity
[29] | Fang K, Luo J, Metelmann A, Matheny M H, Marquardt F, Clerk A A, and Painter O 2017 Nat. Phys. 13 465 | Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering
[30] | Verhagen E and Alù A 2017 Nat. Phys. 13 922 | Optomechanical nonreciprocity
[31] | Shen Z, Zhang Y L, Chen Y, Sun F W, Zou X B, Guo G C, Zou C L, and Dong C H 2018 Nat. Commun. 9 1797 | Reconfigurable optomechanical circulator and directional amplifier
[32] | Hill J T, Safavi-Naeini A H, Chan J, and Painter O 2012 Nat. Commun. 3 1196 | Coherent optical wavelength conversion via cavity optomechanics
[33] | Liu Y X, Davanço M, Aksyuk V, and Srinivasan K 2013 Phys. Rev. Lett. 110 223603 | Electromagnetically Induced Transparency and Wideband Wavelength Conversion in Silicon Nitride Microdisk Optomechanical Resonators
[34] | Vahala K J 2003 Nature 424 839 | Optical microcavities
[35] | Lin G, Coillet A, and Chembo Y K 2017 Adv. Opt. Photon. 9 828 | Nonlinear photonics with high-Q whispering-gallery-mode resonators
[36] | Dayan B, Parkins A S, Aoki T, Ostby E P, Vahala K J, and Kimble H J 2008 Science 319 1062 | A Photon Turnstile Dynamically Regulated by One Atom
[37] | Junge C, O'Shea D, Volz J, and Rauschenbeutel A 2013 Phys. Rev. Lett. 110 213604 | Strong Coupling between Single Atoms and Nontransversal Photons
[38] | Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379 | Cavity-based quantum networks with single atoms and optical photons
[39] | Ilchenko V S and Matsko A B 2006 IEEE J. Sel. Top. Quantum Electron. 12 15 | Optical resonators with whispering-gallery modes-part II: applications
[40] | Özdemir Ş K, Zhu J, Yang X, Peng B, Yilmaz H, He L, Monifi F, Huang S H, Long G L, and Yang L 2014 Proc. Natl. Acad. Sci. USA 111 E3836 | Highly sensitive detection of nanoparticles with a self-referenced and self-heterodyned whispering-gallery Raman microlaser
[41] | Li B B, Clements W R, Yu X C, Shi K, Gong Q, and Xiao Y F 2014 Proc. Natl. Acad. Sci. USA 111 14657 | Single nanoparticle detection using split-mode microcavity Raman lasers
[42] | Foreman M R, Swaim J D, and Vollmer F 2015 Adv. Opt. Photon. 7 168 | Whispering gallery mode sensors
[43] | Chen W J, Özdemir Ş K, Zhao G M, Wiersig J, and Yang L 2017 Nature 548 192 | Exceptional points enhance sensing in an optical microcavity
[44] | Braginsky V B, Gorodetsky M L, and Ilchenko V S 1989 Phys. Lett. A 137 393 | Quality-factor and nonlinear properties of optical whispering-gallery modes
[45] | Kippenberg T J, Spillane S M, and Vahala K J 2004 Phys. Rev. Lett. 93 083904 | Kerr-Nonlinearity Optical Parametric Oscillation in an Ultrahigh- Toroid Microcavity
[46] | Spillane S M, Kippenberg T J, and Vahala K J 2002 Nature 415 621 | Ultralow-threshold Raman laser using a spherical dielectric microcavity
[47] | Yang Q F, Yi X, Yang K Y, and Vahala K 2017 Nat. Photon. 11 560 | Counter-propagating solitons in microresonators
[48] | Guo H, Karpov M, Lucas E, Kordts A, Pfeiffer M H P, Brasch V, Lihachev G, Lobanov V E, Gorodetsky M L, and Kippenberg T J 2017 Nat. Phys. 13 94 | Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators
[49] | Guo X, Zou C L, Jung H, and Tang H X 2016 Phys. Rev. Lett. 117 123902 | On-Chip Strong Coupling and Efficient Frequency Conversion between Telecom and Visible Optical Modes
[50] | Li Q, Davanço M, and Srinivasan K 2016 Nat. Photon. 10 406 | Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics
[51] | Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q, and Xiao Y F 2017 Phys. Rev. Lett. 118 033901 | Experimental Demonstration of Spontaneous Chirality in a Nonlinear Microresonator
[52] | Jiao Y F, Lu T X, and Jing H 2018 Phys. Rev. A 97 013843 | Optomechanical second-order sidebands and group delays in a Kerr resonator
[53] | Post E J 1967 Rev. Mod. Phys. 39 475 | Sagnac Effect
[54] | Chow W W, Gea-Banacloche J, Pedrotti L M, Sanders V E, Schleich W, and Scully M O 1985 Rev. Mod. Phys. 57 61 | The ring laser gyro
[55] | Ciminelli C, Dell'Olio F, Campanella C E, and Armenise M N 2010 Adv. Opt. Photon. 2 370 | Photonic technologies for angular velocity sensing
[56] | Ge L, Sarma R, and Cao H 2014 Phys. Rev. A 90 013809 | Rotation-induced mode coupling in open wavelength-scale microcavities
[57] | Li B, Özdemir Ş K, Xu X W, Zhang L, Kuang L M, and Jing H 2021 Phys. Rev. A 103 053522 | Nonreciprocal optical solitons in a spinning Kerr resonator
[58] | Sarma R, Ge L, Wiersig J, and Cao H 2015 Phys. Rev. Lett. 114 053903 | Rotating Optical Microcavities with Broken Chiral Symmetry
[59] | Zhang H L, Peng M Y, Xu X W, and Jing H 2022 Chin. Phys. B 31 014215 | Anti- APT -symmetric Kerr gyroscope
[60] | Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N, and Carmon T 2018 Nature 558 569 | Flying couplers above spinning resonators generate irreversible refraction
[61] | Jiang Y, Maayani S, Carmon T, Nori F, and Jing H 2018 Phys. Rev. Appl. 10 064037 | Nonreciprocal Phonon Laser
[62] | Jing H, Lü H, Özdemir S K, Carmon T, and Nori F 2018 Optica 5 1424 | Nanoparticle sensing with a spinning resonator
[63] | Zhang H L, Huang R, Zhang S D, Li Y, Qiu C W, Nori F, and Jing H 2020 Nano Lett. 20 7594 | Breaking Anti-PT Symmetry by Spinning a Resonator
[64] | Huang R, Miranowicz A, Liao J Q, Nori F, and Jing H 2018 Phys. Rev. Lett. 121 153601 | Nonreciprocal Photon Blockade
[65] | Li B J, Huang R, Xu X W, Miranowicz A, and Jing H 2019 Photon. Res. 7 630 | Nonreciprocal unconventional photon blockade in a spinning optomechanical system
[66] | Xu X W, Zhao Y J, Wang H, Jing H, and Chen A X 2020 Photon. Res. 8 143 | Quantum nonreciprocality in quadratic optomechanics
[67] | Xu X W, Li Y, Li B J, Jing H, and Chen A X 2020 Phys. Rev. Appl. 13 044070 | Nonreciprocity via Nonlinearity and Synthetic Magnetism
[68] | Jiao Y F, Zhang S D, Zhang Y L, Miranowicz A, Kuang L M, and Jing H 2020 Phys. Rev. Lett. 125 143605 | Nonreciprocal Optomechanical Entanglement against Backscattering Losses
[69] | Davuluri S and Zhu S 2015 Europhys. Lett. 112 64002 | Controlling optomechanically induced transparency through rotation
[70] | Lü H, Jiang Y, Wang Y Z, and Jing H 2017 Photon. Res. 5 367 | Optomechanically induced transparency in a spinning resonator
[71] | Mirza I M, Ge W, and Jing H 2019 Opt. Express 27 25515 | Optical nonreciprocity and slow light in coupled spinning optomechanical resonators
[72] | Boyd R W 2008 Nonlinear Optics (New York: Academic Press) |
[73] | Malykin G B 2000 Phys. Usp. 43 1229 | The Sagnac effect: correct and incorrect explanations
[74] | Gardiner C W and Collett M J 1985 Phys. Rev. A 31 3761 | Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation
[75] | Adair R, Chase L L, and Payne S A 1989 Phys. Rev. B 39 3337 | Nonlinear refractive index of optical crystals
[76] | Reimann R, Doderer M, Hebestreit E, Diehl R, Frimmer M, Windey D, Tebbenjohanns F, and Novotny L 2018 Phys. Rev. Lett. 121 033602 | GHz Rotation of an Optically Trapped Nanoparticle in Vacuum
[77] | Ahn J, Xu Z, Bang J, Deng Y H, Hoang T M, Han Q, Ma R M, and Li T 2018 Phys. Rev. Lett. 121 033603 | Optically Levitated Nanodumbbell Torsion Balance and GHz Nanomechanical Rotor
[78] | Maayani S, Martin L L, Kaminski S, and Carmon T 2016 Optica 3 552 | Cavity optocapillaries
[79] | Sofikitis D, Bougas L, Katsoprinakis G E, Spiliotis A K, Loppinet B, and Rakitzis T P 2014 Nature 514 76 | Evanescent-wave and ambient chiral sensing by signal-reversing cavity ringdown polarimetry
[80] | Xu H, Mason D, Jiang L, and Harris J G E 2016 Nature 537 80 | Topological energy transfer in an optomechanical system with exceptional points
[81] | Ruesink F, Miri M A, Alù A, and Verhagen E 2016 Nat. Commun. 7 13662 | Nonreciprocity and magnetic-free isolation based on optomechanical interactions