[1] | Cirac J I, Zoller P, Kimble H J, and Mabuchi H 1997 Phys. Rev. Lett. 78 3221 | Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network
[2] | Kimble H J 2008 Nature 453 1023 | The quantum internet
[3] | Daiss S, Langenfeld S, Welte S, Distante E, Thomas P, Hartung L, Morin O, and Rempe G 2021 Science 371 614 | A quantum-logic gate between distant quantum-network modules
[4] | Li T, Miranowicz A, Hu X, Xia K, and Nori F 2018 Phys. Rev. A 97 062318 | Quantum memory and gates using a -type quantum emitter coupled to a chiral waveguide
[5] | Lai Y H, Suh M G, Lu Y K, Shen B, Yang Q F, Wang H, Li J, Lee S H, Yang K Y, and Vahala K 2020 Nat. Photon. 14 345 | Earth rotation measured by a chip-scale ring laser gyroscope
[6] | Iwamura H, Hayashi S, and Iwasaki H 1978 Opt. Quantum Electron. 10 393 | A compact optical isolator using a Y3Fe5O12 crystal for near infra-red radiation
[7] | Gauthier D J, Narum P, and Boyd R W 1986 Opt. Lett. 11 623 | Simple, compact, high-performance permanent-magnet Faraday isolator
[8] | Wang Y P, Rao J W, Yang Y, Xu P C, Gui Y S, Yao B M, You J Q, and Hu C M 2019 Phys. Rev. Lett. 123 127202 | Nonreciprocity and Unidirectional Invisibility in Cavity Magnonics
[9] | Ren Y L, Ma S L, Xie J K, Li X K, Cao M T, and Li F L 2022 Phys. Rev. A 105 013711 | Nonreciprocal single-photon quantum router
[10] | Lira H, Yu Z, Fan S, and Lipson M 2012 Phys. Rev. Lett. 109 033901 | Electrically Driven Nonreciprocity Induced by Interband Photonic Transition on a Silicon Chip
[11] | Estep N A, Sounas D L, Soric J, and Alù A 2014 Nat. Phys. 10 923 | Magnetic-free non-reciprocity and isolation based on parametrically modulated coupled-resonator loops
[12] | Xia K Y, Lu G W, Lin G W, Cheng Y Q, Niu Y P, Gong S Q, and Twamley J 2014 Phys. Rev. A 90 043802 | Reversible nonmagnetic single-photon isolation using unbalanced quantum coupling
[13] | Shomroni I, Rosenblum S, Lovsky Y, Bechler O, Guendelman G, and Dayan B 2014 Science 345 903 | All-optical routing of single photons by a one-atom switch controlled by a single photon
[14] | Söllner I, Mahmoodian S, Hansen S L, Midolo L, Javadi A, Kiršanskė G, Pregnolato T, El-Ella H, Lee E H, Song J D, Stobbe S, and Lodahl P 2015 Nat. Nanotechnol. 10 775 | Deterministic photon–emitter coupling in chiral photonic circuits
[15] | Sayrin C, Junge C, Mitsch R, Albrecht B, O'Shea D, Schneeweiss P, Volz J, and Rauschenbeutel A 2015 Phys. Rev. X 5 041036 | Nanophotonic Optical Isolator Controlled by the Internal State of Cold Atoms
[16] | Scheucher M, Hilico A, Will E, Volz J, and Rauschenbeutel A 2016 Science 354 1577 | Quantum optical circulator controlled by a single chirally coupled atom
[17] | Tang L, Tang J, Zhang W, Lu G, Zhang H, Zhang Y, Xia K, and Xiao M 2019 Phys. Rev. A 99 043833 | On-chip chiral single-photon interface: Isolation and unidirectional emission
[18] | Tang J S, Nie W, Tang L, Chen M, Su X, Lu Y, Nori F, and Xia K 2022 Phys. Rev. Lett. 128 203602 | Nonreciprocal Single-Photon Band Structure
[19] | Lu Y, Liao Z, Li F L, and Wang X H 2022 Photon. Res. 10 389 | Integrable high-efficiency generation of three-photon entangled states by a single incident photon
[20] | Bliokh K Y, Smirnova D, and Nori F 2015 Science 348 1448 | Quantum spin Hall effect of light
[21] | Bliokh K Y, Leykam D, Lein M, and Nori F 2019 Nat. Commun. 10 580 | Topological non-Hermitian origin of surface Maxwell waves
[22] | Antognozzi M, Bermingham C R, Harniman R L, Simpson S, Senior J, Hayward R, Hoerber H, Dennis M R, Bekshaev A Y, Bliokh K Y, and Nori F 2016 Nat. Phys. 12 731 | Direct measurements of the extraordinary optical momentum and transverse spin-dependent force using a nano-cantilever
[23] | Triolo C, Cacciola A, Patan$\rm {\grave{e}}$ S, Saija R, Savasta S, and Nori F 2017 ACS Photon. 4 2242 | Spin-Momentum Locking in the Near Field of Metal Nanoparticles
[24] | Bliokh K Y, Rodríguez-Fortuño F J, Nori F, and Zayats A V 2015 Nat. Photon. 9 796 | Spin–orbit interactions of light
[25] | Bliokh K Y and Nori F 2015 Phys. Rep. 592 1 | Transverse and longitudinal angular momenta of light
[26] | Zhang S C, Hu Y Q, Lin G W, Niu Y P, Xia K Y, Gong J B, and Gong S Q 2018 Nat. Photon. 12 744 | Thermal-motion-induced non-reciprocal quantum optical system
[27] | Xia K Y, Nori F, and Xiao M 2018 Phys. Rev. Lett. 121 203602 | Cavity-Free Optical Isolators and Circulators Using a Chiral Cross-Kerr Nonlinearity
[28] | Lin G, Zhang S, Hu Y, Niu Y, Gong J, and Gong S 2019 Phys. Rev. Lett. 123 033902 | Nonreciprocal Amplification with Four-Level Hot Atoms
[29] | Liang C, Liu B, Xu A N, Wen X, Lu C, Xia K, Tey M K, Liu Y C, and You L 2020 Phys. Rev. Lett. 125 123901 | Collision-Induced Broadband Optical Nonreciprocity
[30] | Li E Z, Ding D S, Yu Y C, Dong M X, Zeng L, Zhang W H, Ye Y H, Wu H Z, Zhu Z H, Gao W, Guo G C, and Shi B S 2020 Phys. Rev. Res. 2 033517 | Experimental demonstration of cavity-free optical isolators and optical circulators
[31] | Dong M X, Xia K Y, Zhang W H, Yu Y C, Ye Y H, Li E Z, Zeng L, Ding D S, Shi B S, Guo G C, and Nori F 2021 Sci. Adv. 7 eabe8924 | All-optical reversible single-photon isolation at room temperature
[32] | Hu Y, Qi Y, You Y, Zhang S, Lin G, Li X, Gong J, Gong S, and Niu Y 2021 Phys. Rev. Appl. 16 014046 | Passive Nonlinear Optical Isolators Bypassing Dynamic Reciprocity
[33] | Hu X X, Wang Z B, Zhang P, Chen G J, Zhang Y L, Li G, Zou X B, Zhang T, Tang H X, Dong C H, Guo G C, and Zou C L 2021 Nat. Commun. 12 2389 | Noiseless photonic non-reciprocity via optically-induced magnetization
[34] | Wu H, Ruan Y, Li Z, Dong M X, Cai M, Tang J, Tang L, Zhang H, Xiao M, and Xia K 2022 Laser Photon. Rev. 16 2100708 | Fundamental Distinction of Electromagnetically Induced Transparency and Autler–Townes Splitting in Breaking the Time‐Reversal Symmetry
[35] | Tang L, Tang J S, and Xia K 2022 Adv. Quantum Technol. 5 2200014 | Chiral Quantum Optics and Optical Nonreciprocity Based on Susceptibility‐Momentum Locking
[36] | Wang D W, Zhou H T, Guo M J, Zhang J X, Evers J, and Zhu S Y 2013 Phys. Rev. Lett. 110 093901 | Optical Diode Made from a Moving Photonic Crystal
[37] | Horsley S A R, Wu J H, Artoni M, and La R G C 2013 Phys. Rev. Lett. 110 223602 | Optical Nonreciprocity of Cold Atom Bragg Mirrors in Motion
[38] | Wu J H, Artoni M, and La R G C 2014 Phys. Rev. Lett. 113 123004 | Non-Hermitian Degeneracies and Unidirectional Reflectionless Atomic Lattices
[39] | Li B, Özdemir K, Xu X W, Zhang L, Kuang L M, and Jing H 2021 Phys. Rev. A 103 053522 | Nonreciprocal optical solitons in a spinning Kerr resonator
[40] | Maayani S, Dahan R, Kligerman Y, Moses E, Hassan A U, Jing H, Nori F, Christodoulides D N, and Carmon T 2018 Nature 558 569 | Flying couplers above spinning resonators generate irreversible refraction
[41] | Jiang Y, Maayani S, Carmon T, Nori F, and Jing H 2018 Phys. Rev. Appl. 10 064037 | Nonreciprocal Phonon Laser
[42] | Shen Z, Zhang Y L, Chen Y, Zou C L, Xiao Y F, Zou X B, Sun F W, Guo G C, and Dong C H 2016 Nat. Photon. 10 657 | Experimental realization of optomechanically induced non-reciprocity
[43] | Xu X W, Song L N, Zheng Q, Wang Z H, and Li Y 2018 Phys. Rev. A 98 063845 | Optomechanically induced nonreciprocity in a three-mode optomechanical system
[44] | Lai D G, Huang J F, Yin X L, Hou B P, Li W, Vitali D, Nori F, and Liao J Q 2020 Phys. Rev. A 102 011502 | Nonreciprocal ground-state cooling of multiple mechanical resonators
[45] | Ruesink F, Miri M A, Al$\rm {\grave{u}}$ A, and Verhagen E 2016 Nat. Commun. 7 13662 | Nonreciprocity and magnetic-free isolation based on optomechanical interactions
[46] | Xu H, Mason D, Jiang L, and Harris J G E 2016 Nature 537 80 | Topological energy transfer in an optomechanical system with exceptional points
[47] | Xu H, Jiang L, Clerk A A, and Harris J G E 2019 Nature 568 65 | Nonreciprocal control and cooling of phonon modes in an optomechanical system
[48] | Jalas D, Petrov A, Eich M, Freude W, Fan S, Yu Z, Baets R, Popovi$\rm {\acute{c}}$ M, Melloni A, Joannopoulos J D, Vanwolleghem M, Doerr C R, and Renner H 2013 Nat. Photon. 7 579 | What is — and what is not — an optical isolator
[49] | Fan L, Wang J, Varghese L T, Shen H, Niu B, Xuan Y, Weiner A M, and Qi M 2012 Science 335 447 | An All-Silicon Passive Optical Diode
[50] | Yu Y, Chen Y, Hu H, Xue W, Yvind K, and Mork J 2015 Laser & Photon. Rev. 9 241 | Nonreciprocal transmission in a nonlinear photonic-crystal Fano structure with broken symmetry
[51] | Yang K Y, Skarda J, Cotrufo M, Dutt A, Ahn G H, Sawaby M, Vercruysse D, Arbabian A, Fan S, Alù A, and Vučković J 2020 Nat. Photon. 14 369 | Inverse-designed non-reciprocal pulse router for chip-based LiDAR
[52] | Tang L, Tang J, Wu H, Zhang J, Xiao M, and Xia K 2021 Photon. Res. 9 1218 | Broad-intensity-range optical nonreciprocity based on feedback-induced Kerr nonlinearity
[53] | Shi Y, Yu Z, and Fan S 2015 Nat. Photon. 9 388 | Limitations of nonlinear optical isolators due to dynamic reciprocity
[54] | Sounas D L and Alù A 2018 Phys. Rev. B 97 115431 | Fundamental bounds on the operation of Fano nonlinear isolators
[55] | Yang P, Xia X, He H, Li S, Han X, Zhang P, Li G, Zhang P, Xu J, Yang Y, and Zhang T 2019 Phys. Rev. Lett. 123 233604 | Realization of Nonlinear Optical Nonreciprocity on a Few-Photon Level Based on Atoms Strongly Coupled to an Asymmetric Cavity
[56] | Peng B, Özdemir K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, and Yang L 2014 Nat. Phys. 10 394 | Parity–time-symmetric whispering-gallery microcavities
[57] | Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, and Xiao M 2014 Nat. Photon. 8 524 | Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators
[58] | Del B L, Silver J M, Woodley M T M, Stebbings S L, Zhao X, and Del'Haye P 2018 Optica 5 279 | Microresonator isolators and circulators based on the intrinsic nonreciprocity of the Kerr effect
[59] | Woodley M T M, Silver J M, Hill L, Copie F, Del B L, Zhang S, Oppo G L, and Del'Haye P 2018 Phys. Rev. A 98 053863 | Universal symmetry-breaking dynamics for the Kerr interaction of counterpropagating light in dielectric ring resonators
[60] | Wang J Q, Yang Y H, Li M, Hu X X, Surya J B, Xu X B, Dong C H, Guo G C, Tang H X, and Zou C L 2021 Phys. Rev. Lett. 126 133601 | Efficient Frequency Conversion in a Degenerate Microresonator
[61] | Tang L, Tang J, Chen M, Nori F, Xiao M, and Xia K 2022 Phys. Rev. Lett. 128 083604 | Quantum Squeezing Induced Optical Nonreciprocity
[62] | Boyd R W 2008 Nonlinear Optics (New York: Academic Press) |
[63] | Xiao Y F, Özdemir K, Gaddam V, Dong C H, Imoto N, and Yang L 2008 Opt. Express 16 21462 | Quantum nondemolition measurement of photon number via optical Kerr effect in an ultra-high-Q microtoroid cavity
[64] | Cao Q T, Wang H, Dong C H, Jing H, Liu R S, Chen X, Ge L, Gong Q, and Xiao Y F 2017 Phys. Rev. Lett. 118 033901 | Experimental Demonstration of Spontaneous Chirality in a Nonlinear Microresonator
[65] | Del B L, Silver J M, Stebbings S L, and Del'Haye P 2017 Sci. Rep. 7 43142 | Symmetry Breaking of Counter-Propagating Light in a Nonlinear Resonator
[66] | Marin-Palomo P, Kemal J N, Karpov M, Kordts A, Pfeifle J, Pfeiffer M H P, Trocha P, Wolf S, Brasch V, Anderson M H, Rosenberger R, Vijayan K, Freude W, Kippenberg T J, and Koos C 2017 Nature 546 274 | Microresonator-based solitons for massively parallel coherent optical communications
[67] | Kutsaev S V, Krasnok A, Romanenko S N, Smirnov A Y, Taletski K, and Yakovlev V P 2021 Adv. Photon. Res. 2 2000104 | Up‐And‐Coming Advances in Optical and Microwave Nonreciprocity: From Classical to Quantum Realm
[68] | Taflove A and Hagness S C 2005 Computational Electrodynamics (Norwood: Artech House) |
[69] | Pintus P, Pasquale F D, and Bowers J E 2013 Opt. Express 21 5041 | Integrated TE and TM optical circulators on ultra-low-loss silicon nitride platform
[70] | Goda K, Miyakawa O, Mikhailov E E, Saraf S, Adhikari R, McKenzie K, Ward R, Vass S, Weinstein A J, and Mavalvala N 2008 Nat. Phys. 4 472 | A quantum-enhanced prototype gravitational-wave detector
[71] | Masoudi A and Newson T P 2017 Opt. Lett. 42 290 | High spatial resolution distributed optical fiber dynamic strain sensor with enhanced frequency and strain resolution
[72] | Shin J, Liu Z, Bai W, Liu Y, Yan Y, Xue Y, Kandela I, Pezhouh M, MacEwan M R, Huang Y, Ray W Z, Zhou W, and Rogers J A 2019 Sci. Adv. 5 eaaw1899 | Bioresorbable optical sensor systems for monitoring of intracranial pressure and temperature
[73] | Zielińska J A and Mitchell M W 2017 Opt. Lett. 42 5298 | Self-tuning optical resonator
[74] | Tsang H K and Liu Y 2008 Semicond. Sci. Technol. 23 064007 | Nonlinear optical properties of silicon waveguides
[75] | Guo X, Peng Z, Ding P, Li L, Chen X, Wei H, Tong Z, and Guo L 2021 Opt. Mater. Express 11 1080 | Nonlinear optical properties of 6H-SiC and 4H-SiC in an extensive spectral range
[76] | Wang H L, Wang D, Chen G D, and Liu H 2007 Chin. Phys. Lett. 24 2600 | Third-Order Nonlinear Optical Susceptibility of Indium Phosphide Nanocrystals
[77] | Moody G, Chang L, Steiner T J, and Bowers J E 2020 AVS Quantum Sci. 2 041702 | Chip-scale nonlinear photonics for quantum light generation
[78] | Yang K Y, Oh D Y, Lee S H, Yang Q F, Yi X, Shen B, Wang H, and Vahala K 2018 Nat. Photon. 12 297 | Bridging ultrahigh-Q devices and photonic circuits
[79] | Desiatov B, Shams-Ansari A, Zhang M, Wang C, and Lončar M 2019 Optica 6 380 | Ultra-low-loss integrated visible photonics using thin-film lithium niobate
[80] | Zhang M, Wang C, Cheng R, Shams-Ansari A, and Lončar M 2017 Optica 4 1536 | Monolithic ultra-high-Q lithium niobate microring resonator
[81] | Jiao Y F, Lu T X, and Jing H 2018 Phys. Rev. A 97 013843 | Optomechanical second-order sidebands and group delays in a Kerr resonator
[82] | Huang R, Miranowicz A, Liao J Q, Nori F, and Jing H 2018 Phys. Rev. Lett. 121 153601 | Nonreciprocal Photon Blockade
[83] | Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E, and Kimble H J 2005 Phys. Rev. A 71 013817 | Ultrahigh- toroidal microresonators for cavity quantum electrodynamics
[84] | White A D, Ahm G H, Gasse K V et al. 2022 arXiv:2206.01173 [physics.optics] | Integrated Passive Nonlinear Optical Isolators