[1] | Buchanan M 2019 Nat. Phys. 15 1208 | The power of machine learning
[2] | Carleo G, Cirac I, Cranmer K, Daudet L, Schuld M, Tishby N, Vogt-Maranto L, and Zdeborová L 2019 Rev. Mod. Phys. 91 045002 | Machine learning and the physical sciences
[3] | Wang L 2016 Phys. Rev. B 94 195105 | Discovering phase transitions with unsupervised learning
[4] | Carrasquilla J and Melko R G 2017 Nat. Phys. 13 431 | Machine learning phases of matter
[5] | Pang L G, Zhou K, Su N, Petersen H, Stöcker H, and Wang X N 2018 Nat. Commun. 9 210 | An equation-of-state-meter of quantum chromodynamics transition from deep learning
[6] | Fujimoto Y, Fukushima K, and Murase K 2018 Phys. Rev. D 98 023019 | Methodology study of machine learning for the neutron star equation of state
[7] | Fujimoto Y, Fukushima K, and Murase K 2020 Phys. Rev. D 101 054016 | Mapping neutron star data to the equation of state using the deep neural network
[8] | Metodiev E M and Thaler J 2018 Phys. Rev. Lett. 120 241602 | Jet Topics: Disentangling Quarks and Gluons at Colliders
[9] | Kasieczka G, Plehn T, Butter A, Cranmer K, Debnath D, Dillon B M, Fairbairn M, Faroughy D A, Fedorko W, Gay C, Gouskos L, F K J, Komiske P, Leiss S, Lister A, Macaluso S, Metodiev E, Moore L, Nachman B, Nordström K, Pearkes J, Qu H, Rath Y, Rieger M, Shih D, Thompson J, and Varma S 2019 SciPost Phys. 7 014 | The Machine Learning landscape of top taggers
[10] | Steinheimer J, Pang L G, Zhou K, Koch V, Randrup J, and Stoecker H 2019 J. High Energ. Phys. 2019(12) 122 | A machine learning study to identify spinodal clumping in high energy nuclear collisions
[11] | Jiang L J, Wang L X, and Zhou K 2021 Phys. Rev. D 103 116023 | Deep learning stochastic processes with QCD phase transition
[12] | Zhao Y S, Wang L, Zhou K, and Huang X G 2022 Phys. Rev. C 106 L051901 | Detecting the chiral magnetic effect via deep learning
[13] | Smith J S, Isayev O, and Roitberg A E 2017 Chem. Sci. 8 3192 | ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost
[14] | Carleo G and Troyer M 2017 Science 355 602 | Solving the quantum many-body problem with artificial neural networks
[15] | Nagy A and Savona V 2019 Phys. Rev. Lett. 122 250501 | Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems
[16] | Hartmann M J and Carleo G 2019 Phys. Rev. Lett. 122 250502 | Neural-Network Approach to Dissipative Quantum Many-Body Dynamics
[17] | Pfau D, Spencer J S, Matthews A G D G, and Foulkes W M C 2020 Phys. Rev. Res. 2 033429 | Ab initio solution of the many-electron Schrödinger equation with deep neural networks
[18] | Vicentini F, Biella A, Regnault N, and Ciuti C 2019 Phys. Rev. Lett. 122 250503 | Variational Neural-Network Ansatz for Steady States in Open Quantum Systems
[19] | Yoshioka N and Hamazaki R 2019 Phys. Rev. B 99 214306 | Constructing neural stationary states for open quantum many-body systems
[20] | Shen H T, Liu J W, and Fu L 2018 Phys. Rev. B 97 205140 | Self-learning Monte Carlo with deep neural networks
[21] | Mori Y, Kashiwa K, and Ohnishi A 2018 Prog. Theor. Exp. Phys. 2018 | Application of a neural network to the sign problem via the path optimization method
[22] | Alexandru A, Bedaque P F, Lamm H, and Lawrence S 2017 Phys. Rev. D 96 094505 | Deep learning beyond Lefschetz thimbles
[23] | Broecker P, Carrasquilla J, Melko R G, and Trebst S 2017 Sci. Rep. 7 8823 | Machine learning quantum phases of matter beyond the fermion sign problem
[24] | Pawlowski J M and Urban J M 2020 Mach. Learn.: Sci. Technol. 1 045011 | Reducing autocorrelation times in lattice simulations with generative adversarial networks
[25] | Zhou K, EndrŐ G, Pang L G, and Stöcker H 2019 Phys. Rev. D 100 011501 | Regressive and generative neural networks for scalar field theory
[26] | Wu D, Wang L, and Zhang P 2019 Phys. Rev. Lett. 122 080602 | Solving Statistical Mechanics Using Variational Autoregressive Networks
[27] | Sharir O, Levine Y, Wies N, Carleo G, and Shashua A 2020 Phys. Rev. Lett. 124 020503 | Deep Autoregressive Models for the Efficient Variational Simulation of Many-Body Quantum Systems
[28] | Ou Z 2019 arXiv:1808.01630v4 [cs.LG] |
[29] | Cristoforetti M, Jurman G, Nardelli A I, and Furlanello C 2017 arXiv:1705.09524 [hep-lat] | Towards meaningful physics from generative models
[30] | Thouless D J, Duncan F, Haldane M, and Kosterlitz J M 2016 Scientific Background: Topological Phase Transitions and Topological Phases of Matter, in The Nobel Prize in Physics, Advanced Information (The Royal Swedish Academy of Sciences) |
[31] | Wang C and Zhai H 2017 Phys. Rev. B 96 144432 | Machine learning of frustrated classical spin models. I. Principal component analysis
[32] | Beach M J S, Golubeva A, and Melko R G 2018 Phys. Rev. B 97 045207 | Machine learning vortices at the Kosterlitz-Thouless transition
[33] | Suchsland P and Wessel S 2018 Phys. Rev. B 97 174435 | Parameter diagnostics of phases and phase transition learning by neural networks
[34] | Zhang P, Shen H, and Zhai H 2018 Phys. Rev. Lett. 120 066401 | Machine Learning Topological Invariants with Neural Networks
[35] | Carvalho D, García-Martínez N A, Lado J L, and Fernández-Rossier J 2018 Phys. Rev. B 97 115453 | Real-space mapping of topological invariants using artificial neural networks
[36] | Hu H Y, Li S H, Wang L, and You Y Z 2020 Phys. Rev. Res. 2 023369 | Machine learning holographic mapping by neural network renormalization group
[37] | Fukushima K, Funai S S, and Iida H 2019 arXiv:1908.00281 [cs.LG] | Featuring the topology with the unsupervised machine learning
[38] | Rodriguez-Nieva J F and Scheurer M S 2019 Nat. Phys. 15 790 | Identifying topological order through unsupervised machine learning
[39] | Scheurer M S and Slager R J 2020 Phys. Rev. Lett. 124 226401 | Unsupervised Machine Learning and Band Topology
[40] | Gupta R, DeLapp J, Batrouni G G, Fox G C, Baillie C F, and Apostolakis J 1988 Phys. Rev. Lett. 61 1996 | Phase Transition in the Model
[41] | Kosterlitz J M 1974 J. Phys. C: Solid State Phys. 7 1046 | The critical properties of the two-dimensional xy model
[42] | Weber H and Minnhagen P 1988 Phys. Rev. B 37 5986 | Monte Carlo determination of the critical temperature for the two-dimensional XY model
[43] | Swendsen R H and Wang J S 1987 Phys. Rev. Lett. 58 86 | Nonuniversal critical dynamics in Monte Carlo simulations
[44] | Blücher S, Kades L, Pawlowski J M, Strodthoff N, and Urban J M 2020 Phys. Rev. D 101 094507 | Towards novel insights in lattice field theory with explainable machine learning
[45] | Nicoli K, Kessel P, Strodthoff N, Samek W, Müller K R, and Nakajima S 2019 arXiv:1903.11048 [cond-mat.stat-mech] | Comment on "Solving Statistical Mechanics Using VANs": Introducing saVANt - VANs Enhanced by Importance and MCMC Sampling
[46] | Williams R J 1992 Mach. Learn. 8 229 | Simple statistical gradient-following algorithms for connectionist reinforcement learning
[47] | van den Oord A, Kalchbrenner N, and Kavukcuoglu K 2016 Proceedings of the 33rd International Conference on International Conference on Machine Learning vol 48 pp 1747–1756 |
[48] | Germain M, Gregor K, Murray I, and Larochelle H 2015 Proceedings of the 32nd International Conference on Machine Learning vol 37 pp 881–889 |
[49] | Chung S G 1999 Phys. Rev. B 60 11761 | Essential finite-size effect in the two-dimensional XY model
[50] | Wagner H and Schollwoeck U 2010 Scholarpedia 5 9927 | Mermin-Wagner Theorem
[51] | Wehenkel A and Louppe G 2020 arXiv:2006.00866 [cs,stat] | You say Normalizing Flows I see Bayesian Networks
[52] | Salimans T, Karpathy A, Chen X, and Kingma D P 2017 arXiv:1701.05517 [cs,stat] | PixelCNN++: Improving the PixelCNN with Discretized Logistic Mixture Likelihood and Other Modifications
[53] | Hasenbusch M 2005 J. Phys. A 38 5869 | The two-dimensional XY model at the transition temperature: a high-precision Monte Carlo study
[54] | Komura Y and Okabe Y 2012 J. Phys. Soc. Jpn. 81 113001 | Large-Scale Monte Carlo Simulation of Two-Dimensional Classical XY Model Using Multiple GPUs
[55] | Tobochnik J and Chester G V 1979 Phys. Rev. B 20 3761 | Monte Carlo study of the planar spin model
[56] | Teitel S and Jayaprakash C 1983 Phys. Rev. B 27 598 | Phase transtions in frustrated two-dimensional models
[57] | Bighin G, Defenu N, Nándori I, Salasnich L, and Trombettoni A 2019 Phys. Rev. Lett. 123 100601 | Berezinskii-Kosterlitz-Thouless Paired Phase in Coupled Models
[58] | Goodman J and Sokal A D 1989 Phys. Rev. D 40 2035 | Multigrid Monte Carlo method. Conceptual foundations
[59] | Kusnezov D and Sloan J H 1993 Nucl. Phys. B 409 635 | Global demons in field theory. Critical slowing down in the XY model
[60] | Julku A, Peltonen T J, Liang L, Heikkilä T T, and Törmä P 2020 Phys. Rev. B 101 060505 | Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene