[1] | Ma S K 1976 Modern Theory of Critical Phenomena (Canada: W. A. Benjamin, Inc.) |
[2] | Cardy J 1996 Scaling and Renormalization in Statistical Physics (Cambridge: Cambridge University Press) |
[3] | Amit D J and Martin-Mayer V 2005 Field Theory, the Renormalization Group, and Critical Phenomena 3rd edn (Singapore: World Scientific) |
[4] | Zinn-Justin J 2021 Quantum Field Theory and Critical Phenomena 5th edn (Oxford: Oxford University Press) |
[5] | Vasil'ev A N 2004 The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics (London: Chapman and Hall/CRC) |
[6] | Täuber U C 2014 Critical Dynamics (Cambridge: Cambridge University Press) |
[7] | Folk R and Moser G 2006 J. Phys. A 39 R207 | Critical dynamics: a field-theoretical approach
[8] | Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435 | Theory of dynamic critical phenomena
[9] | Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press) |
[10] | Chakravarty S, Ingold G L, Kivelson S, and Luther A 1986 Phys. Rev. Lett. 56 2303 | Onset of Global Phase Coherence in Josephson-Junction Arrays: A Dissipative Phase Transition
[11] | Werner P, Völker K, Troyer M, and Chakravarty S 2005 Phys. Rev. Lett. 94 047201 | Phase Diagram and Critical Exponents of a Dissipative Ising Spin Chain in a Transverse Magnetic Field
[12] | Weiss U 2008 Quantum Dissipative Systems 3rd edn (Singapore: World Scientific) |
[13] | Yin S, Mai P, and Zhong F 2014 Phys. Rev. B 89 094108 | Nonequilibrium quantum criticality in open systems: The dissipation rate as an additional indispensable scaling variable
[14] | Caruso F, Giovannetti V, Lupo C, and Mancini S 2014 Rev. Mod. Phys. 86 1203 | Quantum channels and memory effects
[15] | Breuer H P, Laine E M, Piilo J, and Vacchini B 2016 Rev. Mod. Phys. 88 021002 | Colloquium : Non-Markovian dynamics in open quantum systems
[16] | Brown B J, Loss D, Pachos J K, Self C N, and Wootton J R 2016 Rev. Mod. Phys. 88 045005 | Quantum memories at finite temperature
[17] | Bulla R, Tong N H, and Vojta M 2003 Phys. Rev. Lett. 91 170601 | Numerical Renormalization Group for Bosonic Systems and Application to the Sub-Ohmic Spin-Boson Model
[18] | Winter A, Rieger H, Vojta M, and Bulla R 2009 Phys. Rev. Lett. 102 030601 | Quantum Phase Transition in the Sub-Ohmic Spin-Boson Model: Quantum Monte Carlo Study with a Continuous Imaginary Time Cluster Algorithm
[19] | Kirchner S, Si Q, and Ingersent K 2009 Phys. Rev. Lett. 102 166405 | Finite-Size Scaling of Classical Long-Ranged Ising Chains and the Criticality of Dissipative Quantum Impurity Models
[20] | Sperstad I B, Stiansen E B, and Sudbø A 2012 Phys. Rev. B 85 214302 | Quantum criticality in spin chains with non-Ohmic dissipation
[21] | De Filippis G, de Candia A, Cangemi L M, Sassetti M, Fazio R, and Cataudella V 2020 Phys. Rev. B 101 180408(R) | Quantum phase transitions in the spin-boson model: Monte Carlo method versus variational approach à la Feynman
[22] | Wang Y Z, He S, Duan L, and Chen Q H 2021 Phys. Rev. B 103 205106 | Quantum tricritical point emerging in the spin-boson model with two dissipative spins in staggered biases
[23] | Schulz M, Trimper S, and Zabrocki K 2007 J. Phys. A 40 3369 | Spatiotemporal memory in a diffusion–reaction system
[24] | Tarasov V E and Zaslavsky G M 2007 Phys. A 383 291 | Fractional dynamics of systems with long-range space interaction and temporal memory
[25] | Bouchaud J P and Georges A 1990 Phys. Rep. 195 127 | Anomalous diffusion in disordered media: Statistical mechanisms, models and physical applications
[26] | Metzler R and Klafter J 2000 Phys. Rep. 339 1 | The random walk's guide to anomalous diffusion: a fractional dynamics approach
[27] | West B J 2014 Rev. Mod. Phys. 86 1169 | Colloquium : Fractional calculus view of complexity: A tutorial
[28] | Keim N C, Paulsen J D, Zeravcic Z, Sastry S, and Nagel S R 2019 Rev. Mod. Phys. 91 035002 | Memory formation in matter
[29] | Tsimring L S and Pikovsky A 2001 Phys. Rev. Lett. 87 250602 | Noise-Induced Dynamics in Bistable Systems with Delay
[30] | Masoller C 2002 Phys. Rev. Lett. 88 034102 | Noise-Induced Resonance in Delayed Feedback Systems
[31] | Masoller C 2003 Phys. Rev. Lett. 90 020601 | Distribution of Residence Times of Time-Delayed Bistable Systems Driven by Noise
[32] | Trimper S, Zabrocki K, and Schulz M 2002 Phys. Rev. E 66 026114 | Memory driven Ginzburg-Landau model
[33] | Schütz G M and Trimper S 2004 Phys. Rev. E 70 045101(R) | Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk
[34] | Trimper S, Zabrocki K, and Schulz M 2004 Phys. Rev. E 70 056133 | Memory-controlled diffusion
[35] | Mokshin A V, Yulmetyev R M, and Hänggi P 2005 Phys. Rev. Lett. 95 200601 | Simple Measure of Memory for Dynamical Processes Described by a Generalized Langevin Equation
[36] | Scalliet C and Berthier L 2019 Phys. Rev. Lett. 122 255502 | Rejuvenation and Memory Effects in a Structural Glass
[37] | Jack R L and Harris R J 2020 Phys. Rev. E 102 012154 | Giant leaps and long excursions: Fluctuation mechanisms in systems with long-range memory
[38] | Narinder N, Bechinger C, and Gomez-Solano J R 2018 Phys. Rev. Lett. 121 078003 | Memory-Induced Transition from a Persistent Random Walk to Circular Motion for Achiral Microswimmers
[39] | Lozano C, Gomez-Solano J R, and Bechinger C 2019 Nat. Mater. 18 1118 | Active particles sense micromechanical properties of glasses
[40] | Pastor-Satorras R, Castellano C, Van Mieghem P, and Vespignani A 2015 Rev. Mod. Phys. 87 925 | Epidemic processes in complex networks
[41] | Van Mieghem P and van de Bovenkamp R 2013 Phys. Rev. Lett. 110 108701 | Non-Markovian Infection Spread Dramatically Alters the Susceptible-Infected-Susceptible Epidemic Threshold in Networks
[42] | Gleeson J P, O'Sullivan K P, Baños R A, and Moreno Y 2016 Phys. Rev. X 6 021019 | Effects of Network Structure, Competition and Memory Time on Social Spreading Phenomena
[43] | Lin Z H, Feng M, Tang M, Liu Z, Xu C, Hui P M, and Lai Y C 2020 Nat. Commun. 11 2490 | Non-Markovian recovery makes complex networks more resilient against large-scale failures
[44] | Zaslavsky G M 2005 Hamiltonian Chaos and Fractional Dynamics (Oxford: Oxford University Press) |
[45] | Rangarajan G and Ding M (eds) 2003 Processes with Long-Range Correlations: Theory and Applications, Lecture Notes in Physics vol 621 (Berlin: Springer-Verlag) |
[46] | Beran J, Feng Y, Ghosh S, and Kulik R 2013 Long-Memory Processes: Probabilistic Properties and Statistical Methods (Berlin: Springer-Verlag) |
[47] | Wunsch C 2015 Modern Observational Physical Oceanography: Understanding the Global Ocean (Princeton, NJ: Princeton University Press) |
[48] | Valagiannopoulos C, Sarsen A, and Alù A 2021 IEEE Trans. Anten. Propag. 69 7720 | Angular Memory of Photonic Metasurfaces
[49] | Valagiannopoulos C 2022 IEEE Trans. Anten. Propag. 70 5534 | Multistability in Coupled Nonlinear Metasurfaces
[50] | Murray J D 2000 Mathematical Biology, part I (Berlin: Springer) |
[51] | Murray J D 2003 Mathematical Biology, part II (Berlin: Springer) |
[52] | Kappler J, Daldrop J O, Brünig F N, Boehle M D, and Netz R R 2018 J. Chem. Phys. 148 014903 | Memory-induced acceleration and slowdown of barrier crossing
[53] | Freeman M 2000 Nature 408 313 | Feedback control of intercellular signalling in development
[54] | Zhang J J and Zhou T 2019 Proc. Natl. Acad. Sci. USA 116 23542 | Markovian approaches to modeling intracellular reaction processes with molecular memory
[55] | Jiang Z J, Zhou J W, Hou T Q, Wong K Y M, and Huang H P 2021 Phys. Rev. E 104 064306 | Associative memory model with arbitrary Hebbian length
[56] | Campa A, Dauxois T, and Ruffo S 2009 Phys. Rep. 480 57 | Statistical mechanics and dynamics of solvable models with long-range interactions
[57] | Fisher M E, Ma S K, and Nickel B G 1972 Phys. Rev. Lett. 29 917 | Critical Exponents for Long-Range Interactions
[58] | Jurcevic P, Lanyon B P, Hauke P, Hempel C, Zoller P, Blatt R, and Roos C F 2014 Nature 511 202 | Quasiparticle engineering and entanglement propagation in a quantum many-body system
[59] | Britton J W, Sawyer B C, Keith A C, Wang C C J, Freericks J K, Uys H, Biercuk M J, and Bollinger J J 2012 Nature 484 489 | Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins
[60] | Islam R, Senko C, Campbell W, Korenblit S, Smith J, Lee A, Edwards E, Wang C C, Freericks J, and Monroe C 2013 Science 340 583 | Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator
[61] | Richerme P, Gong Z X, Lee A, Senko C, Smith J, Foss-Feig M, Michalakis S, Gorshkov A V, and Monroe C 2014 Nature 511 198 | Non-local propagation of correlations in quantum systems with long-range interactions
[62] | Bohnet J G, Sawyer B C, Britton J W, Wall M L, Rey A M, Foss-Feig M, and Bollinger J J 2016 Science 352 1297 | Quantum spin dynamics and entanglement generation with hundreds of trapped ions
[63] | Yang F, Jiang S J, and Zhou F 2019 Phys. Rev. A 99 012119 | Achieving continuously tunable critical exponents for long-range spin systems simulated with trapped ions
[64] | Metropolis N, Rosenbluth A W, Rosenbluth M N, Teller A M, and Teller E 1953 J. Chem. Phys. 21 1087 | Equation of State Calculations by Fast Computing Machines
[65] | Landau D P and Binder K 2005 A Guide to Monte Carlo Simulations in Statistical Physics 2nd edn (Cambridge: Cambridge University Press) |
[66] | Glauber R J 1963 J. Math. Phys. 4 294 | Time‐Dependent Statistics of the Ising Model
[67] | Gong S R, Zhong F, Huang X Z, and Fan S L 2010 New J. Phys. 12 043036 | Finite-time scaling via linear driving
[68] | Zhong F 2011 Applications of Monte Carlo Method in Science and Engineering, edited by Mordechai S (Intech, Rijeka, Croatia) p 469 available at http://www.dwz.cn/B9Pe2 |
[69] | Feng B Q, Yin S, and Zhong F 2016 Phys. Rev. B 94 144103 | Theory of driven nonequilibrium critical phenomena
[70] | Zeng S S, Szeto S P, and Zhong F 2022 arXiv:2203.16243 [cond-mat.stat-mech] for a proof of the equivalence of the two models | Theory of Critical Phenomena with Memory
[71] | Janssen H K 1979 Dynamical Critical Phenomena and Related topics, Enz C P (ed) Lecture Notes in Physics vol 104 (Berlin: Springer) |
[72] | Janssen H K 1992 From Phase Transition to Chaos, Györgyi G, Kondor I, Sasvári L, and Tél T (eds) (Singapore: World Scientific) |
[73] | Martin P C, Siggia E D, and Rose H A 1973 Phys. Rev. A 8 423 | Statistical Dynamics of Classical Systems
[74] | Sak J 1973 Phys. Rev. B 8 281 | Recursion Relations and Fixed Points for Ferromagnets with Long-Range Interactions
[75] | It is derived from the standard scaling laws $d\nu=2-\alpha$, $\alpha+2\beta+\gamma=2$, and $\gamma=\beta(\delta-1)$ (see Refs. [1-5]) |
[76] | Zhong F 2017 Front. Phys. 12 126402 | Renormalization-group theory of first-order phase transition dynamics in field-driven scalar model
[77] | In the long-range fixed point $v^{*}\neq0$ and to the present one-loop order, Eq. (11e) is equal to $\gamma_{\lambda_{1}}|=2-2/\theta$ rather than zero because it is irrlevant (see the text). However, to higher orders, it is again equal to zero and leads to crossover, see Ref. [78] for details. |
[78] | Zeng S, Szeto S P, and Zhong F 2022 in preparation |
[79] | Note that although $\gamma_{t}$ becomes $\gamma_{t'}=\gamma_{t}-\gamma_{a}/2$, $d$ also changes to $d-\gamma_{a}/2$. Consequently, $\gamma_{h}$ keeps unchanged. |
[80] | Yin S, Qin X, Lee C, and Zhong F 2012 arXiv:1207.1602 [cond-mat.stat-mech] | Finite-time scaling of dynamic quantum criticality
[81] | Liu C W, Polkovnikov A, and Sandvik A W 2014 Phys. Rev. B 89 054307 | Dynamic scaling at classical phase transitions approached through nonequilibrium quenching
[82] | Huang Y Y, Yin S, Feng B Q, and Zhong F 2014 Phys. Rev. B 90 134108 | Kibble-Zurek mechanism and finite-time scaling
[83] | Liu C W, Polkovnikov A, Sandvik A W, and Young A P 2015 Phys. Rev. E 92 022128 | Universal dynamic scaling in three-dimensional Ising spin glasses
[84] | Liu C W, Polkovnikov A, and Sandvik A W 2015 Phys. Rev. Lett. 114 147203 | Quantum versus Classical Annealing: Insights from Scaling Theory and Results for Spin Glasses on 3-Regular Graphs
[85] | Huang Y Y, Yin S, Hu Q J, and Zhong F 2016 Phys. Rev. B 93 024103 | Kibble-Zurek mechanism beyond adiabaticity: Finite-time scaling with critical initial slip
[86] | Pelissetto A and Vicari E 2016 Phys. Rev. E 93 032141 | Off-equilibrium scaling behaviors driven by time-dependent external fields in three-dimensional vector models
[87] | Xu N, Castelnovo C, Melko R G, Chamon C, and Sandvik A W 2018 Phys. Rev. B 97 024432 | Dynamic scaling of topological ordering in classical systems
[88] | Xue M, Yin S, and You L 2018 Phys. Rev. A 98 013619 | Universal driven critical dynamics across a quantum phase transition in ferromagnetic spinor atomic Bose-Einstein condensates
[89] | Cao X M, Hu Q J, and Zhong F 2018 Phys. Rev. B 98 245124 | Scaling theory of entanglement entropy in confinements near quantum critical points
[90] | Gerster M, Haggenmiller B, Tschirsich F, Silvi P, and Montangero S 2019 Phys. Rev. B 100 024311 | Dynamical Ginzburg criterion for the quantum-classical crossover of the Kibble-Zurek mechanism
[91] | Li Y H, Zeng Z D, and Zhong F 2019 Phys. Rev. E 100 020105(R) | Driving driven lattice gases to identify their universality classes
[92] | Mathey S and Diehl S 2020 Phys. Rev. Res. 2 013150 | Activating critical exponent spectra with a slow drive
[93] | Yuan W L, Yin S, and Zhong F 2021 Chin. Phys. Lett. 38 026401 | Self-Similarity Breaking: Anomalous Nonequilibrium Finite-Size Scaling and Finite-Time Scaling
[94] | Yuan W L and Zhong F 2021 J. Phys.: Condens. Matter 33 375401 | Phases fluctuations and anomalous finite-time scaling in an externally applied field on finite-sized lattices
[95] | Yuan W L and Zhong F 2021 J. Phys.: Condens. Matter 33 385401 | Phases fluctuations, self-similarity breaking and anomalous scalings in driven nonequilibrium critical phenomena
[96] | Zuo Z Y, Yin S, Cao X M, and Zhong F 2021 Phys. Rev. B 104 214108 | Scaling theory of the Kosterlitz-Thouless phase transition
[97] | Clark L W, Feng L, and Chin C 2016 Science 354 606 | Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition
[98] | Keesling A, Omran A, Levine H, Bernien H, Pichler H, Choi S, Samajdar R, Schwartz S, Silvi P, Sachdev S, Zoller P, Endres M, Greiner M, Vuletić V, and Lukin M D 2019 Nature 568 207 | Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator
[99] | Zhong F 2002 Phys. Rev. B 66 060401(R) | Monte Carlo renormalization group study of the dynamic scaling of hysteresis in the two-dimensional Ising model
[100] | Zhong F 2006 Phys. Rev. E 73 047102 | Probing criticality with linearly varying external fields: Renormalization group theory of nonequilibrium critical dynamics under driving
[101] | Luijten E and Blöte H W J 1997 Phys. Rev. B 56 8945 | Classical critical behavior of spin models with long-range interactions