[1] | Manfredonia I, Nithin C, Ponce-Salvatierra A, Ghosh P, Wirecki T K, Marinus T, Ogando N S, Snijder E J, van Hemert M J, and Bujnicki J M 2020 Nucl. Acids Res. 48 12436 | Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements
[2] | https://www.who.int/news/item/26-11-2021-classification-of-omicron-(b.1.1.529)-sars-cov-2-variant-of-concern |
[3] | https://www.who.int/publications/m/item/enhancing-readiness-for-omicron-(b.1.1.529)-technical-brief-and-priority-actions-for-member-states |
[4] | Grabowski F, Kochańczyk M, and Lipniacki T 2022 Viruses 14 294 | The Spread of SARS-CoV-2 Variant Omicron with a Doubling Time of 2.0–3.3 Days Can Be Explained by Immune Evasion
[5] | Karim S S A and Karim Q A 2021 Lancet 398 2126 | Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic
[6] | Hui K P, Ho J C, Cheung M C, Ng K C, Ching R H, Lai K L, Kam T T, Gu H G, Sit K Y, and Hsin M K 2022 Nature 603 715 | SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo
[7] | Meng B, Abdullahi A, Ferreira I A, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber P P, Fatihi S, and Rathore S 2022 Nature 603 706 | Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity
[8] | Liu Y, Liu J Y, Johnson B A, Xia H J, Ku Z Q, Schindewolf C, Widen S G, An Z Q, Weaver S C, and Menachery V D 2022 Cell Rep. 39 110829 | Delta spike P681R mutation enhances SARS-CoV-2 fitness over Alpha variant
[9] | Naveca F G, Nascimento V, Souza V, Corado A D L, Nascimento F, Silva G, Mejía M C, Brandão M J, Á C, and Duarte D 2022 Microbiol. Spectrum 10 e02366-21 | Spread of Gamma (P.1) Sub-Lineages Carrying Spike Mutations Close to the Furin Cleavage Site and Deletions in the N-Terminal Domain Drives Ongoing Transmission of SARS-CoV-2 in Amazonas, Brazil
[10] | Song J S, Lee J, Kim M, Jeong H S, Kim M S, Kim S G, Yoo H N, Lee J J, Lee H Y, and Lee S E 2022 Emerging Infect. Dis. 28 756 | Serial Intervals and Household Transmission of SARS-CoV-2 Omicron Variant, South Korea, 2021
[11] | Ren S Y, Wang W B, Gao R D, and Zhou A M 2022 World J. Clin. Cases 10 1 | Omicron variant (B.1.1.529) of SARS-CoV-2: Mutation, infectivity, transmission, and vaccine resistance
[12] | Araf Y, Akter F, Tang Y D, Fatemi R, Parvez S A, Zheng C, and Hossain G 2022 J. Med. Virol. 94 1825 | Omicron variant of SARS‐CoV‐2: Genomics, transmissibility, and responses to current COVID‐19 vaccines
[13] | Zhang L, Li Q Q, Liang Z T, Li T, Liu S, Cui Q Q, Nie J H, Wu Q, Qu X W, and Huang W J 2022 Emerging Microbes Infect. 11 1 | The significant immune escape of pseudotyped SARS-CoV-2 variant Omicron
[14] | Hu J, Peng P, Cao X X, Wu K, Chen J, Wang K, Tang N, and Huang A L 2022 Cell. & Mol. Immunol. 19 293 | Increased immune escape of the new SARS-CoV-2 variant of concern Omicron
[15] | Sun C, Kang Y F, Liu Y T, Kong X W, Xu H Q, Xiong D, Xie C, Liu Y H, Peng S, and Feng G K 2022 Signal Transduct. Target. Ther. 7 42 | Parallel profiling of antigenicity alteration and immune escape of SARS-CoV-2 Omicron and other variants
[16] | Zhang X T, Wu S J, Wu B L, Yang Q R, Chen A, Li Y Z, Zhang Y W, Pan T, Zhang H, and He X 2021 Signal Transduct. Target. Ther. 6 430 | SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance
[17] | Carreño J M, Alshammary H, Tcheou J, Singh G, Raskin A J, Kawabata H, Sominsky L A, Clark J J, Adelsberg D C, and Bielak D A 2022 Nature 602 682 | Activity of convalescent and vaccine serum against SARS-CoV-2 Omicron
[18] | Dejnirattisai W, Shaw R H, Supasa P, Liu C, Stuart A S, Pollard A J, Liu X X, Lambe T, Crook D, and Stuart D I 2022 Lancet 399 234 | Reduced neutralisation of SARS-CoV-2 omicron B.1.1.529 variant by post-immunisation serum
[19] | Cameroni E, Bowen J E, Rosen L E, Saliba C, Zepeda S K, Culap K, Pinto D, VanBlargan L A, De Marco A, and di Iulio J 2022 Nature 602 664 | Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift
[20] | Cao Y L, Wang J, Jian F C, Xiao T H, Song W L, Yisimayi A, Huang W J, Li Q G, Wang P, and An R 2022 Nature 602 657 | Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies
[21] | Dejnirattisai W, Huo J D, Zhou D, Zahradník J, Supasa P, Liu C, Duyvesteyn H M, Ginn H M, Mentzer A J, and Tuekprakhon A 2022 Cell 185 467 | SARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responses
[22] | Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, Bolland W H, Porrot F, Staropoli I, and Lemoine F 2022 Nature 602 671 | Considerable escape of SARS-CoV-2 Omicron to antibody neutralization
[23] | Liu L, Iketani S, Guo Y C, Chan J F W, Wang M, Liu L Y, Luo Y, Chu H, Huang Y M, and Nair M S 2022 Nature 602 676 | Striking antibody evasion manifested by the Omicron variant of SARS-CoV-2
[24] | McCallum M, Czudnochowski N, Rosen L E, Zepeda S K, Bowen J E, Walls A C, Hauser K, Joshi A, Stewart C, and Dillen J R 2022 Science 375 864 | Structural basis of SARS-CoV-2 Omicron immune evasion and receptor engagement
[25] | Yin W C, Xu Y W, Xu P Y, Cao X D, Wu C R, Gu C Y, He X H, Wang X X, Huang S J, and Yuan Q N 2022 Science 375 1048 | Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody
[26] | Lin S, Chen Z M, Zhang X D, Wen A, Yuan X, Yu C Z, Yang J, He B, Cao Y, and Lu G 2022 Signal Transduct. Target. Ther. 7 56 | Characterization of SARS-CoV-2 Omicron spike RBD reveals significantly decreased stability, severe evasion of neutralizing-antibody recognition but unaffected engagement by decoy ACE2 modified for enhanced RBD binding
[27] | Han P C, Li L J, Liu S, Wang Q S, Zhang D, Xu Z P, Han P, Li X M, Peng Q, and Su C 2022 Cell 185 630 | Receptor binding and complex structures of human ACE2 to spike RBD from omicron and delta SARS-CoV-2
[28] | Wu L Y, Zhou L P, Mo M X, Liu T T, Wu C K, Gong C Y, Lu K, Gong L K, Zhu W L, and Xu Z J 2022 Signal Transduct. Target. Ther. 7 8 | SARS-CoV-2 Omicron RBD shows weaker binding affinity than the currently dominant Delta variant to human ACE2
[29] | Ye G, Liu B, and Li F 2022 Nat. Commun. 13 1214 | Cryo-EM structure of a SARS-CoV-2 omicron spike protein ectodomain
[30] | Omotuyi I, Afolabi E, Oyinloye B, Fatumo S, Femi-Oyewo M, and Bogoro S 2022 Comput. Biol. Med. 142 105226 | SARS-CoV-2 Omicron spike glycoprotein receptor binding domain exhibits super-binder ability with ACE2 but not convalescent monoclonal antibody
[31] | Rath S L, Padhi A K, and Mandal N 2022 Biochem. Biophys. Res. Commun. 592 18 | Scanning the RBD-ACE2 molecular interactions in Omicron variant
[32] | Lan J, He X H, Ren Y F, Wang Z Y, Zhou H, Fan S L, Zhu C Y, Liu D S, Shao B, and Liu T Y 2022 Cell Res. 32 593 | Structural insights into the SARS-CoV-2 Omicron RBD-ACE2 interaction
[33] | Lupala C S, Ye Y J, Chen H, Su X D, and Liu H G 2022 Biochem. Biophys. Res. Commun. 590 34 | Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor
[34] | Jawaid M Z, Baidya A, Mahboubi-Ardakani R, Davis R L, and Cox D L 2021 bioRxiv:10.1101/2021.12.14.472704 | Simulation of the omicron variant of SARS-CoV-2 shows broad antibody escape, weakened ACE2 binding, and modest increase in furin binding
[35] | Verma J and Subbarao N 2022 bioRxiv:2022.01.25.477671 | Structural insight into antibody evasion of SARS-CoV-2 omicron variant
[36] | Webb B and Sali A 2016 Curr. Protoc. Bioinf. 54 5.6.1 | Comparative Protein Structure Modeling Using MODELLER
[37] | Jorgensen W L and Madura J D 1983 J. Am. Chem. Soc. 105 1407 | Quantum and statistical mechanical studies of liquids. 25. Solvation and conformation of methanol in water
[38] | Berendsen H J, Postma J V, Van Gunsteren W F, DiNola A, and Haak J R 1984 J. Chem. Phys. 81 3684 | Molecular dynamics with coupling to an external bath
[39] | Venken T, Krnavek D, Münch J, Kirchhoff F, Henklein P, De Maeyer M, and Voet A 2011 Proteins: Struct. Funct. Bioinf. 79 3221 | An optimized MM/PBSA virtual screening approach applied to an HIV-1 gp41 fusion peptide inhibitor
[40] | Ding H M, Yin Y W, Sheng Y J, and Ma Y Q 2021 Chin. Phys. Lett. 38 018701 | Accurate Evaluation on the Interactions of SARS-CoV-2 with Its Receptor ACE2 and Antibodies CR3022/CB6
[41] | Ulmschneider M B, Bagnéris C, McCusker E C, DeCaen P G, Delling M, Clapham D E, Ulmschneider J P, and Wallace B A 2013 Proc. Natl. Acad. Sci. USA 110 6364 | Molecular dynamics of ion transport through the open conformation of a bacterial voltage-gated sodium channel
[42] | Raval A, Piana S, Eastwood M P, Dror R O, and Shaw D E 2012 Proteins: Struct. Funct. Bioinf. 80 2071 | Refinement of protein structure homology models via long, all-atom molecular dynamics simulations
[43] | Mirjalili V and Feig M 2013 J. Chem. Theory Comput. 9 1294 | Protein Structure Refinement through Structure Selection and Averaging from Molecular Dynamics Ensembles
[44] | Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, and Lindahl E 2015 SoftwareX 1–2 19 | GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers
[45] | Maier J A, Martinez C, Kasavajhala K, Wickstrom L, Hauser K E, and Simmerling C 2015 J. Chem. Theory Comput. 11 3696 | ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB
[46] | Sheng Y J, Yin Y W, Ma Y Q, and Ding H M 2021 J. Chem. Inf. Model. 61 2454 | Improving the Performance of MM/PBSA in Protein–Protein Interactions via the Screening Electrostatic Energy
[47] | Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, and Pedersen L G 1995 J. Chem. Phys. 103 8577 | A smooth particle mesh Ewald method
[48] | Hess B, Bekker H, Berendsen H J, and Fraaije J G 1997 J. Comput. Chem. 18 1463 | LINCS: A linear constraint solver for molecular simulations
[49] | Wang E C, Sun H Y, Wang J M, Wang Z, Liu H, Zhang J Z, and Hou T J 2019 Chem. Rev. 119 9478 | End-Point Binding Free Energy Calculation with MM/PBSA and MM/GBSA: Strategies and Applications in Drug Design
[50] | Sun Z X, Yan Y N, Yang M Y, and Zhang J Z 2017 J. Chem. Phys. 146 124124 | Interaction entropy for protein-protein binding
[51] | Duan L L, Liu X, and Zhang J Z 2016 J. Am. Chem. Soc. 138 5722 | Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein–Ligand Binding Free Energy
[52] | Yin Y W, Sheng Y J, Wang M, Ma Y Q, and Ding H M 2021 Nanoscale 13 12865 | Interaction of serum proteins with SARS-CoV-2 RBD
[53] | Meenan N A, Sharma A, Fleishman S J, MacDonald C J, Morel B, Boetzel R, Moore G R, Baker D, and Kleanthous C 2010 Proc. Natl. Acad. Sci. USA 107 10080 | The structural and energetic basis for high selectivity in a high-affinity protein-protein interaction
[54] | Giollo M, Martin A J, Walsh I, Ferrari C, and Tosatto S C 2014 BMC Genomics 15 S7 | NeEMO: a method using residue interaction networks to improve prediction of protein stability upon mutation
[55] | Xu J, Gao L, Liang H, and Chen S D 2021 Nutrition 82 111049 | In silico screening of potential anti–COVID-19 bioactive natural constituents from food sources by molecular docking
[56] | Genheden S 2011 J. Comput.-Aided Mol. Des. 25 1085 | MM/GBSA and LIE estimates of host–guest affinities: dependence on charges and solvation model
[57] | Weis A, Katebzadeh K, Söderhjelm P, Nilsson I, and Ryde U 2006 J. Med. Chem. 49 6596 | Ligand Affinities Predicted with the MM/PBSA Method: Dependence on the Simulation Method and the Force Field