Molecular Insights into Striking Antibody Evasion of SARS-CoV-2 Omicron Variant

  • Received Date: July 18, 2022
  • Published Date: September 30, 2022
  • The SARS-CoV-2 Omicron variant has become the dominant variant in the world. Uncovering the structural basis of altered immune response and enhanced transmission of Omicron is particularly important. Here, taking twenty-five antibodies from four groups as examples, we comprehensively reveal the underlying mechanism of how mutations in Omicron induces the weak neutralization by using molecular simulations. Overall, the binding strength of 68% antibodies is weakened in Omicron, much larger than that in Delta (40%). Specifically, the percentage of the weakened antibodies vary largely in different groups. Moreover, the mutation-induced repulsion is mainly responsive for the weak neutralization in AB/CD groups but does not take effect in EF group. Significantly, we demonstrate that the disappearance of hydrophobic interaction and salt bridges due to residue deletions contributes to the decreased binding energy in NTD group. This work provides unprecedented atomistic details for the distinct neutralization of WT/Delta/Omicron, which informs prospective efforts to design antibodies/vaccines against Omicron.
  • Article Text

  • [1]
    Manfredonia I, Nithin C, Ponce-Salvatierra A, Ghosh P, Wirecki T K, Marinus T, Ogando N S, Snijder E J, van Hemert M J, and Bujnicki J M 2020 Nucl. Acids Res. 48 12436

    Google Scholar

    [2]
    https://www.who.int/news/item/26-11-2021-classification-of-omicron-b.1.1.529-sars-cov-2-variant-of-concern

    Google Scholar

    [3]
    https://www.who.int/publications/m/item/enhancing-readiness-for-omicron-b.1.1.529-technical-brief-and-priority-actions-for-member-states

    Google Scholar

    [4]
    Grabowski F, Kochańczyk M, and Lipniacki T 2022 Viruses 14 294

    Google Scholar

    [5]
    Karim S S A and Karim Q A 2021 Lancet 398 2126

    Google Scholar

    [6]
    Hui K P, Ho J C, Cheung M C, Ng K C, Ching R H, Lai K L, Kam T T, Gu H G, Sit K Y, and Hsin M K 2022 Nature 603 715

    Google Scholar

    [7]
    Meng B, Abdullahi A, Ferreira I A, Goonawardane N, Saito A, Kimura I, Yamasoba D, Gerber P P, Fatihi S, and Rathore S 2022 Nature 603 706

    Google Scholar

    [8]
    Liu Y, Liu J Y, Johnson B A, Xia H J, Ku Z Q, Schindewolf C, Widen S G, An Z Q, Weaver S C, and Menachery V D 2022 Cell Rep. 39 110829

    Google Scholar

    [9]
    Naveca F G, Nascimento V, Souza V, Corado A D L, Nascimento F, Silva G, Mejía M C, Brandão M J, Á C, and Duarte D 2022 Microbiol. Spectrum 10 e02366-21

    Google Scholar

    [10]
    Song J S, Lee J, Kim M, Jeong H S, Kim M S, Kim S G, Yoo H N, Lee J J, Lee H Y, and Lee S E 2022 Emerging Infect. Dis. 28 756

    Google Scholar

    [11]
    Ren S Y, Wang W B, Gao R D, and Zhou A M 2022 World J. Clin. Cases 10 1

    Google Scholar

    [12]
    Araf Y, Akter F, Tang Y D, Fatemi R, Parvez S A, Zheng C, and Hossain G 2022 J. Med. Virol. 94 1825

    Google Scholar

    [13]
    Zhang L, Li Q Q, Liang Z T, Li T, Liu S, Cui Q Q, Nie J H, Wu Q, Qu X W, and Huang W J 2022 Emerging Microbes Infect. 11 1

    Google Scholar

    [14]
    Hu J, Peng P, Cao X X, Wu K, Chen J, Wang K, Tang N, and Huang A L 2022 Cell. & Mol. Immunol. 19 293

    Google Scholar

    [15]
    Sun C, Kang Y F, Liu Y T, Kong X W, Xu H Q, Xiong D, Xie C, Liu Y H, Peng S, and Feng G K 2022 Signal Transduct. Target. Ther. 7 42

    Google Scholar

    [16]
    Zhang X T, Wu S J, Wu B L, Yang Q R, Chen A, Li Y Z, Zhang Y W, Pan T, Zhang H, and He X 2021 Signal Transduct. Target. Ther. 6 430

    Google Scholar

    [17]
    Carreño J M, Alshammary H, Tcheou J, Singh G, Raskin A J, Kawabata H, Sominsky L A, Clark J J, Adelsberg D C, and Bielak D A 2022 Nature 602 682

    Google Scholar

    [18]
    Dejnirattisai W, Shaw R H, Supasa P, Liu C, Stuart A S, Pollard A J, Liu X X, Lambe T, Crook D, and Stuart D I 2022 Lancet 399 234

    Google Scholar

    [19]
    Cameroni E, Bowen J E, Rosen L E, Saliba C, Zepeda S K, Culap K, Pinto D, VanBlargan L A, De Marco A, and di Iulio J 2022 Nature 602 664

    Google Scholar

    [20]
    Cao Y L, Wang J, Jian F C, Xiao T H, Song W L, Yisimayi A, Huang W J, Li Q G, Wang P, and An R 2022 Nature 602 657

    Google Scholar

    [21]
    Dejnirattisai W, Huo J D, Zhou D, Zahradník J, Supasa P, Liu C, Duyvesteyn H M, Ginn H M, Mentzer A J, and Tuekprakhon A 2022 Cell 185 467

    Google Scholar

    [22]
    Planas D, Saunders N, Maes P, Guivel-Benhassine F, Planchais C, Buchrieser J, Bolland W H, Porrot F, Staropoli I, and Lemoine F 2022 Nature 602 671

    Google Scholar

    [23]
    Liu L, Iketani S, Guo Y C, Chan J F W, Wang M, Liu L Y, Luo Y, Chu H, Huang Y M, and Nair M S 2022 Nature 602 676

    Google Scholar

    [24]
    McCallum M, Czudnochowski N, Rosen L E, Zepeda S K, Bowen J E, Walls A C, Hauser K, Joshi A, Stewart C, and Dillen J R 2022 Science 375 864

    Google Scholar

    [25]
    Yin W C, Xu Y W, Xu P Y, Cao X D, Wu C R, Gu C Y, He X H, Wang X X, Huang S J, and Yuan Q N 2022 Science 375 1048

    Google Scholar

    [26]
    Lin S, Chen Z M, Zhang X D, Wen A, Yuan X, Yu C Z, Yang J, He B, Cao Y, and Lu G 2022 Signal Transduct. Target. Ther. 7 56

    Google Scholar

    [27]
    Han P C, Li L J, Liu S, Wang Q S, Zhang D, Xu Z P, Han P, Li X M, Peng Q, and Su C 2022 Cell 185 630

    Google Scholar

    [28]
    Wu L Y, Zhou L P, Mo M X, Liu T T, Wu C K, Gong C Y, Lu K, Gong L K, Zhu W L, and Xu Z J 2022 Signal Transduct. Target. Ther. 7 8

    Google Scholar

    [29]
    Ye G, Liu B, and Li F 2022 Nat. Commun. 13 1214

    Google Scholar

    [30]
    Omotuyi I, Afolabi E, Oyinloye B, Fatumo S, Femi-Oyewo M, and Bogoro S 2022 Comput. Biol. Med. 142 105226

    Google Scholar

    [31]
    Rath S L, Padhi A K, and Mandal N 2022 Biochem. Biophys. Res. Commun. 592 18

    Google Scholar

    [32]
    Lan J, He X H, Ren Y F, Wang Z Y, Zhou H, Fan S L, Zhu C Y, Liu D S, Shao B, and Liu T Y 2022 Cell Res. 32 593

    Google Scholar

    [33]
    Lupala C S, Ye Y J, Chen H, Su X D, and Liu H G 2022 Biochem. Biophys. Res. Commun. 590 34

    Google Scholar

    [34]
    Jawaid M Z, Baidya A, Mahboubi-Ardakani R, Davis R L, and Cox D L 2021 bioRxiv:10.1101/2021.12.14.472704

    Google Scholar

    [35]
    Verma J and Subbarao N 2022 bioRxiv:2022.01.25.477671

    Google Scholar

    [36]
    Webb B and Sali A 2016 Curr. Protoc. Bioinf. 54 5.6.1

    Google Scholar

    [37]
    Jorgensen W L and Madura J D 1983 J. Am. Chem. Soc. 105 1407

    Google Scholar

    [38]
    Berendsen H J, Postma J V, Van Gunsteren W F, DiNola A, and Haak J R 1984 J. Chem. Phys. 81 3684

    Google Scholar

    [39]
    Venken T, Krnavek D, Münch J, Kirchhoff F, Henklein P, De Maeyer M, and Voet A 2011 Proteins: Struct. Funct. Bioinf. 79 3221

    Google Scholar

    [40]
    Ding H M, Yin Y W, Sheng Y J, and Ma Y Q 2021 Chin. Phys. Lett. 38 018701

    Google Scholar

    [41]
    Ulmschneider M B, Bagnéris C, McCusker E C, DeCaen P G, Delling M, Clapham D E, Ulmschneider J P, and Wallace B A 2013 Proc. Natl. Acad. Sci. USA 110 6364

    Google Scholar

    [42]
    Raval A, Piana S, Eastwood M P, Dror R O, and Shaw D E 2012 Proteins: Struct. Funct. Bioinf. 80 2071

    Google Scholar

    [43]
    Mirjalili V and Feig M 2013 J. Chem. Theory Comput. 9 1294

    Google Scholar

    [44]
    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, and Lindahl E 2015 SoftwareX 1–2 19

    Google Scholar

    [45]
    Maier J A, Martinez C, Kasavajhala K, Wickstrom L, Hauser K E, and Simmerling C 2015 J. Chem. Theory Comput. 11 3696

    Google Scholar

    [46]
    Sheng Y J, Yin Y W, Ma Y Q, and Ding H M 2021 J. Chem. Inf. Model. 61 2454

    Google Scholar

    [47]
    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, and Pedersen L G 1995 J. Chem. Phys. 103 8577

    Google Scholar

    [48]
    Hess B, Bekker H, Berendsen H J, and Fraaije J G 3.0.CO;2-H" target="_blank">1997 J. Comput. Chem. 18 1463

    1997 J. Comput. Chem. 18 1463" target="_blank">Google Scholar

    [49]
    Wang E C, Sun H Y, Wang J M, Wang Z, Liu H, Zhang J Z, and Hou T J 2019 Chem. Rev. 119 9478

    Google Scholar

    [50]
    Sun Z X, Yan Y N, Yang M Y, and Zhang J Z 2017 J. Chem. Phys. 146 124124

    Google Scholar

    [51]
    Duan L L, Liu X, and Zhang J Z 2016 J. Am. Chem. Soc. 138 5722

    Google Scholar

    [52]
    Yin Y W, Sheng Y J, Wang M, Ma Y Q, and Ding H M 2021 Nanoscale 13 12865

    Google Scholar

    [53]
    Meenan N A, Sharma A, Fleishman S J, MacDonald C J, Morel B, Boetzel R, Moore G R, Baker D, and Kleanthous C 2010 Proc. Natl. Acad. Sci. USA 107 10080

    Google Scholar

    [54]
    Giollo M, Martin A J, Walsh I, Ferrari C, and Tosatto S C 2014 BMC Genomics 15 S7

    Google Scholar

    [55]
    Xu J, Gao L, Liang H, and Chen S D 2021 Nutrition 82 111049

    Google Scholar

    [56]
    Genheden S 2011 J. Comput.-Aided Mol. Des. 25 1085

    Google Scholar

    [57]
    Weis A, Katebzadeh K, Söderhjelm P, Nilsson I, and Ryde U 2006 J. Med. Chem. 49 6596

    Google Scholar

  • Related Articles

    [1]Hong-ming Ding, Yue-wen Yin, Song-di Ni, Yan-jing Sheng, Yu-qiang Ma. Accurate Evaluation on the Interactions of SARS-CoV-2 with Its Receptor ACE2 and Antibodies CR3022/CB6 [J]. Chin. Phys. Lett., 2021, 38(1): 018701. doi: 10.1088/0256-307X/38/1/018701
    [2]HE Li-Ping, DAI Jun, SUN Yue, WANG Jing-Yi, LÜ Hui-Bin, WANG Shu-Fang, JIN Kui-Juan, ZHOU Yue-Liang, YANG Guo-Zhen. Label-Free and Real-Time Detection of Antigen-Antibody Capture Processes Using the Oblique-Incidence Reflectivity Difference Technique [J]. Chin. Phys. Lett., 2012, 29(7): 070702. doi: 10.1088/0256-307X/29/7/070702
    [3]JIA Er-Wei, PANG Hou-Rong. KKN and KKN Molecular States with I=1/2, 3/2 and JP=1/2+ Studied with Three-Body Faddeev Calculations [J]. Chin. Phys. Lett., 2011, 28(6): 061401. doi: 10.1088/0256-307X/28/6/061401
    [4]LI Wei, GAO Zong-Mao, GU Jiao. Effects of Variant Rates and Noise on Epidemic Spreading [J]. Chin. Phys. Lett., 2011, 28(5): 058903. doi: 10.1088/0256-307X/28/5/058903
    [5]ZHANG Ping, WANG Hai-Jun. Monte Carlo Simulation on Growth of Antibody-Antigen Complexes: the Role of Unequal Reactivity [J]. Chin. Phys. Lett., 2010, 27(3): 038701. doi: 10.1088/0256-307X/27/3/038701
    [6]XIA Tian, ZHOU Shu-Yu, CHEN Peng, LI Lin, HONG Tao, WANG Yu-Zhu. Continuous Imaging of a Single Neutral Atom in a Variant Magneto-Optical Trap\hyperlinks* [J]. Chin. Phys. Lett., 2010, 27(2): 023701. doi: 10.1088/0256-307X/27/2/023701
    [7]ZHOU Lin-xiang, J.R. Hardy, XU Xin. Molecular Dynamics Simulation of Binary Fluorozirconate Glass ZrF4.BaF2 [J]. Chin. Phys. Lett., 1998, 15(5): 326-328.
    [8]ZHAO Meishan (Meishan ZHAO). Variational Versus Nonvariational Calculations for H2Br Molecular Scattering [J]. Chin. Phys. Lett., 1994, 11(1): 16-19.
    [9]SHAO Jun. Structural Change of SiO2 Glass Under High Pressure -- a Molecular Dynamics Study [J]. Chin. Phys. Lett., 1993, 10(11): 669-672.
    [10]ZHENG Youfeng, WANG Wenhua, LIN Jingu, SHE Yongbo, FIU Kejian. Time-Resolved Infrared Detection of Molecular Nitrogen and Hydrogen Complexes of (η6-C6H6)Cr(CO)2 in Gas Phase [J]. Chin. Phys. Lett., 1992, 9(6): 329-332.
  • Cited by

    Periodical cited type(4)

    1. Chen, Y.-Q., Xu, Y., Ma, Y.-Q. et al. Improving performance of screening MM/PBSA in protein-ligand interactions via machine learning. Chinese Physics B, 2025, 34(1): 018701. DOI:10.1088/1674-1056/ad8ecb
    2. Lan, P.D., Nissley, D.A., O’Brien, E.P. et al. Deciphering the free energy landscapes of SARS-CoV-2 wild type and Omicron variant interacting with human ACE2. Journal of Chemical Physics, 2024, 160(5): 055101. DOI:10.1063/5.0188053
    3. Xu, Y., Huang, S.-W., Ding, H.-M. et al. Molecular dynamics simulations on the interactions between nucleic acids and a phospholipid bilayer. Chinese Physics B, 2024, 33(2): 028701. DOI:10.1088/1674-1056/ad1178
    4. Zhou, Y., Lin, X. Binding kinetics of ten small-molecule drug candidates on SARS-CoV-2 3CLpro revealed by biomolecular simulations. Medicine in Novel Technology and Devices, 2023. DOI:10.1016/j.medntd.2023.100257

    Other cited types(0)

Catalog

    Article views (116) PDF downloads (284) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return