[1] | Pii Y, Penn A, Terzano R, Crecchio C, Mimmo T, and Cesco S 2015 Plant Physiol. Biochem. 87 45 | Plant-microorganism-soil interactions influence the Fe availability in the rhizosphere of cucumber plants
[2] | Kim J and Rees D C 1992 Science 257 1677 | Structural Models for the Metal Centers in the Nitrogenase Molybdenum-Iron Protein
[3] | Hänsch R and Mendel R R 2009 Curr. Opin. Plant Biol. 12 259 | Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl)
[4] | Brear E, Day D, and Smith P 2013 Front. Plant Sci. 4 00359 | Iron: an essential micronutrient for the legume-rhizobium symbiosis
[5] | Zuo Y and Zhang F 2011 Plant Soil 339 83 | Soil and crop management strategies to prevent iron deficiency in crops
[6] | Kobayashi T, Nakayama Y, Itai R N, Nakanishi H, Yoshihara T, Mori S, and Nishizawa N K 2003 Plant J. 36 780 | Identification of novel cis -acting elements, IDE1 and IDE2, of the barley IDS2 gene promoter conferring iron-deficiency-inducible, root-specific expression in heterogeneous tobacco plants
[7] | Guerinot M L and Yi Y 1994 Plant Physiol. 104 815 | Iron: Nutritious, Noxious, and Not Readily Available
[8] | Kaur H, Kaur H, Kaur H, and Srivastava S 2022 Plant Growth Regul. (accepted) |
[9] | Walker E L and Connolly E L 2008 Curr. Opin. Plant Biol. 11 530 | Time to pump iron: iron-deficiency-signaling mechanisms of higher plants
[10] | Vempati R K and Loeppert R H 1988 J. Plant Nutr. 11 1557 | Chemistry and mineralogy of Fe‐containing oxides and layer silicates in relation to plant available iron
[11] | Shenker M and Chen Y 2005 Soil Sci. Plant Nutr. 51 1 | Increasing Iron Availability to Crops: Fertilizers, Organo-Fertilizers, and Biological Approaches
[12] | Takahashi M, Nakanishi H, Kawasaki S, Nishizawa N K, and Mori S 2001 Nat. Biotechnol. 19 466 | Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotianamine aminotransferase genes
[13] | Masuda H, Aung M S, and Nishizawa N K 2013 Rice 6 40 | Iron biofortification of rice using different transgenic approaches
[14] | Saini R K, Nile S H, and Keum Y S 2016 Trends Food Sci. & Technol. 53 13 | Food science and technology for management of iron deficiency in humans: A review
[15] | Defrancesco L 2013 Nat. Biotechnol. 31 794 | How safe does transgenic food need to be?
[16] | Briat J F, Curie C, and Gaymard F 2007 Curr. Opin. Plant Biol. 10 276 | Iron utilization and metabolism in plants
[17] | Dougherty D A 2013 Acc. Chem. Res. 46 885 | The Cation−π Interaction
[18] | Zhang L, Shi G S, Peng B Q, Gao P F, Chen L, Zhong N, Mu L H, Zhang L J, Zhang P, Gou L, Zhao Y M, Liang S S, Jiang J, Zhang Z J, Ren H T, Lei X L, Yi R B, Qiu Y W, Zhang Y F, Liu X, Wu M L, Yan L, Duan C G, Zhang S L, and Fang H P2021 Natl. Sci. Rev. 8 nwaa274 |
[19] | Yang Y, Liang S, Wu H, Shi G, and Fang H 2022 Langmuir 38 2401 | Revisit the Hydrated Cation−π Interaction at the Interface: A New View of Dynamics and Statistics
[20] | Shi G, Liu J, Wang C, Song B, Tu Y, Hu J, and Fang H 2013 Sci. Rep. 3 03436 | Ion Enrichment on the Hydrophobic Carbon-based Surface in Aqueous Salt Solutions due to Cation-π Interactions
[21] | Mahadevi A S and Sastry G N 2013 Chem. Rev. 113 2100 | Cation−π Interaction: Its Role and Relevance in Chemistry, Biology, and Material Science
[22] | Chen L, Shi G, Shen J, Peng B, Zhang B, Wang Y, Bian F, Wang J, Li D, Qian Z, Xu G, Liu G, Zeng J, Zhang L, Yang Y, Zhou G, Wu M, Jin W, Li J, and Fang H 2017 Nature 550 380 | Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
[23] | Zhang Z, Yang Y, Wang J, Zhou Y, Ren Z, Zhong N, Duan C, Wang Y, Yan L, and Fang H 2021 Appl. Surf. Sci. 565 150576 | Water-mediated NaNO3 ultrathin flakes on highly oriented pyrolytic graphite at ambient conditions
[24] | Yang H, Yang Y, Sheng S, Wen B, Sheng N, Liu X, Wan R, Yan L, Hou Z, Lei X, Shi G, and Fang H 2020 Chin. Phys. Lett. 37 028103 | Controlling the Coffee Ring Effect on Graphene and Polymer by Cations
[25] | Xiu X, Puskar N L, Shanata J A P, Lester H A, and Dougherty D A 2009 Nature 458 534 | Nicotine binding to brain receptors requires a strong cation–π interaction
[26] | Jiang J, Mu L, Qiang Y, Yang Y, Wang Z, Yi R, Qiu Y, Chen L, Yan L, and Fang H 2021 Chin. Phys. Lett. 38 116802 | Unexpected Selective Absorption of Lithium in Thermally Reduced Graphene Oxide Membranes
[27] | Shi G S, Dang Y R, Pan T T, Liu X, Liu H, Li S X, Zhang L J, Zhao H W, Li S P, Han J G, Tai R Z, Zhu Y M, Li J C, Ji Q, Mole R A, Yu D, and Fang H P 2016 Phys. Rev. Lett. 117 238102 | Unexpectedly Enhanced Solubility of Aromatic Amino Acids and Peptides in an Aqueous Solution of Divalent Transition-Metal Cations
[28] | Kim D, Lee E C, Kim K S, and Tarakeshwar P 2007 J. Phys. Chem. A 111 7980 | Cation−π−Anion Interaction: A Theoretical Investigation of the Role of Induction Energies
[29] | Wang Z K, Hong S, Wen J L, Ma C Y, Tang L, Jiang H, Chen J J, Li S, Shen X J, and Yuan T Q 2019 ACS Sustain. Chem. Eng. 8 1050 | Lewis Acid-Facilitated Deep Eutectic Solvent (DES) Pretreatment for Producing High-Purity and Antioxidative Lignin
[30] | Zhang Z, Song J, and Han B 2017 Chem. Rev. 117 6834 | Catalytic Transformation of Lignocellulose into Chemicals and Fuel Products in Ionic Liquids
[31] | Huang W Y, Lin Y R, Ho R F, Liu H Y, and Lin Y S 2013 Sci. World J. 2013 368350 | Effects of Water Solutions on Extracting Green Tea Leaves
[32] | Cabrera C, Artacho R, and Giménez R 2006 J. Am. Coll. Nutrition 25 79 | Beneficial Effects of Green Tea—A Review
[33] | Bulgariu L, Escudero L B, Bello O S, Iqbal M, Nisar J, Adegoke K A, Alakhras F, Kornaros M, and Anastopoulos I 2019 J. Mol. Liq. 276 728 | The utilization of leaf-based adsorbents for dyes removal: A review
[34] | Zhu L, Wang Y, He T, You L, and Shen X 2016 J. Polym. Environ. 24 148 | Assessment of Potential Capability of Water Bamboo Leaves on the Adsorption Removal Efficiency of Cationic Dye from Aqueous Solutions
[35] | Yoshida Y, Kiso M, and Goto T 1999 Food Chem. 67 429 | Efficiency of the extraction of catechins from green tea
[36] | Lu T and Chen F 2012 J. Comput. Chem. 33 580 | Multiwfn: A multifunctional wavefunction analyzer