Loading [MathJax]/jax/output/SVG/jax.js

Analytic S-Shaped Temperature Dependence of Peak Positions of the Localized-State Ensemble Luminescence and Application in the Analysis of Luminescence in Non- and Semi-Polar InGaN/GaN Quantum-Wells Micro-Array

  • Received Date: July 31, 2022
  • Published Date: September 30, 2022
  • Two analytic expressions of temperature-dependent peak positions employing the localized-state ensemble (LSE) luminescence model are deduced for the cases of ΔE=EaE0>0 and <0, respectively, under the first-order approximation of Taylor's expansion. Then, the deduced formulas are applied to examine the experimental variable-temperature photoluminescence data of non- and semi-polar InGaN/GaN quantum-wells (QWs) array by jointly considering the monotonic bandgap shrinking described by Pässler's empirical formula. S-shaped temperature dependence of luminescence peaks of both non- and semi-polar QWs is well reproduced with the analytic formulas. As a result, the localization depths are found to be 31.5 and 32.2 meV, respectively, for non- and semi-polar QWs.
  • Article Text

  • [1]
    Yoshida H, Yamashita Y, Kuwabara M, and Kan H 2008 Nat. Photon. 2 551

    Google Scholar

    [2]
    Schneider C, Rahimi-Iman A, Kim N Y, Fischer J, Savenko I G, Amthor M, Lermer M, Wolf A, Worschech L, Kulakovskii V D, and Shelykh I A 2013 Nature 497 348

    Google Scholar

    [3]
    Funato M, Kaneta A, Kawakami Y, Enya Y, Nishizuka K, Ueno M, and Nakamura T 2010 Appl. Phys. Express 3 021002

    Google Scholar

    [4]
    Wang T, Liu Y H, Lee Y B, Ao J P, Bai J, and Sakai S 2002 Appl. Phys. Lett. 81 2508

    Google Scholar

    [5]
    Zelewski S J, Urban J M, Surrente A, Maude D K, Kuc A, Schade L, Johnson R D, Dollmann M, Nayak P K, Snaith H J, and Radaelli P 2019 J. Mater. Chem. C 7 8350

    Google Scholar

    [6]
    Cheche T O, Chang M C, and Lin S H 2005 Chem. Phys. 309 109

    Google Scholar

    [7]
    Shi S L, Li G Q, Xu S J, Zhao Y, and Chen G H 2006 J. Phys. Chem. B 110 10475

    Google Scholar

    [8]
    Wang X, Wang T, Yu D, and Xu S 2021 J. Appl. Phys. 130 205704

    Google Scholar

    [9]
    Tiginyanu I M, Ursaki V V, Zalamai V V, Langa S, Hubbard S, Pavlidis D, and Föll H 2003 Appl. Phys. Lett. 83 1551

    Google Scholar

    [10]
    Reshchikov M A, Huang D, Yun F, Visconti P, He L, Morkoç H, Jasinski J, Liliental-Weber Z, Molnar R J, Park S S, and Lee K Y 2003 J. Appl. Phys. 94 5623

    Google Scholar

    [11]
    Wang K, Araki T, Yamaguchi T, Chen Y T, Yoon E, and Nanishi Y 2015 J. Cryst. Growth 430 93

    Google Scholar

    [12]
    Zhang X T, Liu Y C, Zhi Z Z, Zhang J Y, Lu Y M, Shen D Z, Xu W, Fan X W, and Kong X G 2002 J. Lumin. 99 149

    Google Scholar

    [13]
    Varshni Y P 1967 Physica 34 149

    Google Scholar

    [14]
    Pässler R 1996 Phys. Status Solidi B 193 135

    Google Scholar

    [15]
    Vina L, Logothetidis S, and Cardona M 1984 Phys. Rev. B 30 1979

    Google Scholar

    [16]
    Chowdhury A M, Roul B, Singh D K, Pant R, Nanda K K, and Krupanidhi S B 2020 ACS Appl. Nano Mater. 3 8453

    Google Scholar

    [17]
    Wang J, Dasari K, Cooper K, Thota V R, Wright J, Palai R, Ingram D C, Stinaff E A, Kaya S, and Jadwisienczak W M 2015 Phys. Status Solidi C 12 413

    Google Scholar

    [18]
    Kuokstis E, Sun W H, Shatalov M, Yang J W, and Asif K M 2006 Appl. Phys. Lett. 88 261905

    Google Scholar

    [19]
    Cho Y H, Gainer G H, Lam J B, Song J J, Yang W, and Jhe W 2000 Phys. Rev. B 61 7203

    Google Scholar

    [20]
    Murotani H, Yamada Y, Taguchi T, Ishibashi A, Kawaguchi Y, and Yokogawa T 2008 J. Appl. Phys. 104 053514

    Google Scholar

    [21]
    Eliseev P G, Perlin P, Lee J, and Osiński M 1997 Appl. Phys. Lett. 71 569

    Google Scholar

    [22]
    Li Q, Xu S J, Cheng W C, Xie M H, Tong S Y, Che C M, and Yang H 2001 Appl. Phys. Lett. 79 1810

    Google Scholar

    [23]
    Li Q, Xu S J, Xie M H, and Tong S Y 2005 Europhys. Lett. 71 994

    Google Scholar

    [24]
    Li Q, Xu S J, Xie M H, and Tong S Y 2005 J. Phys.: Condens. Matter 17 4853

    Google Scholar

    [25]
    Arteev D S, Sakharov A V, Zavarin E E, Lundin W V, Rzheutski M V, Lutsenko E V, and Tsatsulnikov A F 2021 Semicond. Sci. Technol. 36 125007

    Google Scholar

    [26]
    Hidouri T, Mal I, Samajdar D P, Saidi F, and Das T D 2019 Superlattices Microstruct. 129 252

    Google Scholar

    [27]
    Klochikhin A, Reznitsky A, Don Dal B, Priller H, Kalt H, Klingshirn C, Permogorov S, and Ivanov S 2004 Phys. Rev. B 69 085308

    Google Scholar

    [28]
    Wright A D, Milot R L, Eperon G E, Snaith H J, Johnston M B, and Herz L M 2017 Adv. Funct. Mater. 27 1700860

    Google Scholar

    [29]
    Klingshirn C F 2007 Semiconductor Optics Third Edition Springer-Verlag Berlin Heidelberg p. 366

    Google Scholar

    [30]
    Grundmann M 2010 The Physics of Semiconductors 2nd edn Berlin: Springer-Verlag p 431

    Google Scholar

    [31]
    Xu Z Y, Lu Z D, Yuan Z L, Yang X P, Zheng B Z, Xu J Z, Ge W K, Wang Y, Wang J, and Chang L L 1998 Superlattices Microstruct. 23 381

    Google Scholar

    [32]
    Hidouri T, Saidi F, Maaref H, Rodriguez P, and Auvray L 2016 Opt. Mater. 62 267

    Google Scholar

    [33]
    Ezzedini M, Hidouri T, M A H H, Sayari A, Shalaan E, Chauvin N, Sfaxi L, Saidi F, Al-Ghamdi A, Bru-Chevallier C, and Maaref H 2017 Nanoscale Res. Lett. 12 450

    Google Scholar

    [34]
    Arbia M B, Smiri B, Demir I, Saidi F, Altuntas I, Hassen F, and Maaref H 2022 Mater. Sci. Semicond. Process. 140 106411

    Google Scholar

    [35]
    Bao W, Su Z, Zheng C, Ning J, and Xu S 2016 Sci. Rep. 6 34545

    Google Scholar

    [36]
    Gong Y, Jiu L, Bruckbauer J, Bai J, Martin R W, and Wang T 2019 Sci. Rep. 9 986

    Google Scholar

    [37]
    Jiu L, Gong Y, and Wang T 2018 Sci. Rep. 8 9898

    Google Scholar

    [38]
    Xu S J, Li G Q, Xiong S J, and Che C M 2006 J. Appl. Phys. 99 073508

    Google Scholar

    [39]
    Li Q, Xu S J, Xie M H, Tong S Y, Zhang X H, Liu W, and Chua S J 2002 Jpn. J. Appl. Phys. 41 L1093

    Google Scholar

    [40]
    Xu S J, Liu W, and Li M F 2002 Appl. Phys. Lett. 81 2959

    Google Scholar

    [41]
    Yu L M, Lu B Y, Yu P, Wang Y, Ding G J, Feng Q, Jiang Y, Chen H, Huang K, Hao Z B, Yu J D, Luo Y, Sun C Z, Xiong B, Han Y J, Wang J, Li H T, and Wang L 2022 Appl. Phys. Lett. 121 042106

    Google Scholar

  • Related Articles

    [1]YU Zhi-Guo, CHEN Peng, YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi, ZHANG Rong, ZHENG You-Dou. Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells [J]. Chin. Phys. Lett., 2012, 29(7): 078501. doi: 10.1088/0256-307X/29/7/078501
    [2]ZHANG Dong-Yan, ZHENG Xin-He, LI Xue-Fei, WU Yuan-Yuan, WANG Jian-Feng, YANG Hui. High Concentration InGaN/GaN Multi-Quantum Well Solar Cells with a Peak Open-Circuit Voltage of 2.45 V [J]. Chin. Phys. Lett., 2012, 29(6): 068801. doi: 10.1088/0256-307X/29/6/068801
    [3]Seoung-Hwan Park, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn. Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers [J]. Chin. Phys. Lett., 2011, 28(7): 078503. doi: 10.1088/0256-307X/28/7/078503
    [4]HOU Qi-Feng, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, YANG Cui-Bai, YIN Hai-Bo, LI Jin-Min, WANG Zhan-Guo. Cathodoluminescence of Yellow and Blue Luminescence in Undoped Semi-insulating GaN and n-GaN [J]. Chin. Phys. Lett., 2011, 28(3): 037102. doi: 10.1088/0256-307X/28/3/037102
    [5]PEI Xiao-Jiang, GUO Li-Wei, WANG Yang, WANG Xiao-Hui, JIA Hai-Qiang, CHEN Hong, ZHOU Jun-Ming, WANG Li, Tamai N. Reversible Carriers Tunnelling in Asymmetric Coupled InGaN/GaN Quantum Wells [J]. Chin. Phys. Lett., 2008, 25(9): 3470-3473.
    [6]DOU Xiu-Ming, SUN Bao-Quan, XIONG Yong-Hua, HUANG She-Song, NIHai-Qiao, NIU Zhi-Chuan. Temperature Dependence of Photoluminescence from Single and Ensemble InAs/GaAs Quantum Dots [J]. Chin. Phys. Lett., 2008, 25(9): 3440-3443.
    [7]SHI Yuan-Yuan, TIAN Ke, LIN Bi-Xia, FU Zhu-Xi. Luminescence with Local Distribution and Its Possible Mechanism in Zinc Oxide Micro-Crystallites [J]. Chin. Phys. Lett., 2007, 24(8): 2398-2400.
    [8]ZHOU Sheng-Qiang, WU Ming-Fang, YAO Shu-De, ZHANG Guo-Yi. Comparative Characterization of InGaN/GaN Multiple Quantum Wells by Transmission Electron Microscopy, X-Ray Diffraction and Rutherford Backscattering [J]. Chin. Phys. Lett., 2005, 22(10): 2700-2703.
    [9]BIAN Li-Feng, JIANG De-Sheng, LIANG Xiao-Gan, LU Shu-Long. Temperature-Induced Switching-Over of the Luminescence Transitions in GaInNAs/GaAs Quantum Wells [J]. Chin. Phys. Lett., 2004, 21(3): 548-551.
    [10]SHI Chao-shu, DENG Jie, HAN Zheng-fu, XIE Zhi-jian, LIAO Jing-ying, G. Zimmerer, J. Beker, M. Kamada, M. Runne, A. Schröder. Temperature Dependence of the Luminescence Decay Time of a PbWO4 Scintillator [J]. Chin. Phys. Lett., 1998, 15(6): 455-456.
  • Cited by

    Periodical cited type(2)

    1. Fan, X., Xu, S. Self-absorption effects of internal luminescence in one-dimensional nanowires with and without localized states. Journal of Applied Physics, 2025, 137(3): 035702. DOI:10.1063/5.0237065
    2. Chen, Z., Zhao, D., Liang, F. et al. Effects of TMIn flow rate during quantum barrier growth on multi-quantum well material properties and device performance of GaN-based laser diodes. Chinese Physics B, 2024, 33(12): 128102. DOI:10.1088/1674-1056/ad8624

    Other cited types(0)

Catalog

    Article views (185) PDF downloads (450) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return