[1] | Yoshida H, Yamashita Y, Kuwabara M, and Kan H 2008 Nat. Photon. 2 551 | A 342-nm ultraviolet AlGaN multiple-quantum-well laser diode
[2] | Schneider C, Rahimi-Iman A, Kim N Y, Fischer J, Savenko I G, Amthor M, Lermer M, Wolf A, Worschech L, Kulakovskii V D, and Shelykh I A 2013 Nature 497 348 | An electrically pumped polariton laser
[3] | Funato M, Kaneta A, Kawakami Y, Enya Y, Nishizuka K, Ueno M, and Nakamura T 2010 Appl. Phys. Express 3 021002 | Weak Carrier/Exciton Localization in InGaN Quantum Wells for Green Laser Diodes Fabricated on Semi-Polar 20\bar21 GaN Substrates
[4] | Wang T, Liu Y H, Lee Y B, Ao J P, Bai J, and Sakai S 2002 Appl. Phys. Lett. 81 2508 | 1 mW AlInGaN-based ultraviolet light-emitting diode with an emission wavelength of 348 nm grown on sapphire substrate
[5] | Zelewski S J, Urban J M, Surrente A, Maude D K, Kuc A, Schade L, Johnson R D, Dollmann M, Nayak P K, Snaith H J, and Radaelli P 2019 J. Mater. Chem. C 7 8350 | Revealing the nature of photoluminescence emission in the metal-halide double perovskite Cs2 AgBiBr6
[6] | Cheche T O, Chang M C, and Lin S H 2005 Chem. Phys. 309 109 | Electron–phonon interaction in absorption and photoluminescence spectra of quantum dots
[7] | Shi S L, Li G Q, Xu S J, Zhao Y, and Chen G H 2006 J. Phys. Chem. B 110 10475 | Green Luminescence Band in ZnO: Fine Structures, Electron−Phonon Coupling, and Temperature Effect
[8] | Wang X, Wang T, Yu D, and Xu S 2021 J. Appl. Phys. 130 205704 | Large negative thermal quenching of yellow luminescence in non-polar InGaN/GaN quantum wells
[9] | Tiginyanu I M, Ursaki V V, Zalamai V V, Langa S, Hubbard S, Pavlidis D, and Föll H 2003 Appl. Phys. Lett. 83 1551 | Luminescence of GaN nanocolumns obtained by photon-assisted anodic etching
[10] | Reshchikov M A, Huang D, Yun F, Visconti P, He L, Morkoç H, Jasinski J, Liliental-Weber Z, Molnar R J, Park S S, and Lee K Y 2003 J. Appl. Phys. 94 5623 | Unusual luminescence lines in GaN
[11] | Wang K, Araki T, Yamaguchi T, Chen Y T, Yoon E, and Nanishi Y 2015 J. Cryst. Growth 430 93 | InN nanocolumns grown by molecular beam epitaxy and their luminescence properties
[12] | Zhang X T, Liu Y C, Zhi Z Z, Zhang J Y, Lu Y M, Shen D Z, Xu W, Fan X W, and Kong X G 2002 J. Lumin. 99 149 | Temperature dependence of excitonic luminescence from nanocrystalline ZnO films
[13] | Varshni Y P 1967 Physica 34 149 | Temperature dependence of the energy gap in semiconductors
[14] | Pässler R 1996 Phys. Status Solidi B 193 135 | Alternative analytical descriptions of the temperature dependence of the energy gap in cadmium sulfide
[15] | Vina L, Logothetidis S, and Cardona M 1984 Phys. Rev. B 30 1979 | Temperature dependence of the dielectric function of germanium
[16] | Chowdhury A M, Roul B, Singh D K, Pant R, Nanda K K, and Krupanidhi S B 2020 ACS Appl. Nano Mater. 3 8453 | Temperature Dependent “S-Shaped” Photoluminescence Behavior of InGaN Nanolayers: Optoelectronic Implications in Harsh Environment
[17] | Wang J, Dasari K, Cooper K, Thota V R, Wright J, Palai R, Ingram D C, Stinaff E A, Kaya S, and Jadwisienczak W M 2015 Phys. Status Solidi C 12 413 | Improved thermal stability and narrowed line width of photoluminescence from InGaN nanorod by ytterbium doping
[18] | Kuokstis E, Sun W H, Shatalov M, Yang J W, and Asif K M 2006 Appl. Phys. Lett. 88 261905 | Role of alloy fluctuations in photoluminescence dynamics of AlGaN epilayers
[19] | Cho Y H, Gainer G H, Lam J B, Song J J, Yang W, and Jhe W 2000 Phys. Rev. B 61 7203 | Dynamics of anomalous optical transitions in alloys
[20] | Murotani H, Yamada Y, Taguchi T, Ishibashi A, Kawaguchi Y, and Yokogawa T 2008 J. Appl. Phys. 104 053514 | Temperature dependence of localized exciton transitions in AlGaN ternary alloy epitaxial layers
[21] | Eliseev P G, Perlin P, Lee J, and Osiński M 1997 Appl. Phys. Lett. 71 569 | “Blue” temperature-induced shift and band-tail emission in InGaN-based light sources
[22] | Li Q, Xu S J, Cheng W C, Xie M H, Tong S Y, Che C M, and Yang H 2001 Appl. Phys. Lett. 79 1810 | Thermal redistribution of localized excitons and its effect on the luminescence band in InGaN ternary alloys
[23] | Li Q, Xu S J, Xie M H, and Tong S Y 2005 Europhys. Lett. 71 994 | A model for steady-state luminescence of localized-state ensemble
[24] | Li Q, Xu S J, Xie M H, and Tong S Y 2005 J. Phys.: Condens. Matter 17 4853 | Origin of the ‘S-shaped’ temperature dependence of luminescent peaks from semiconductors
[25] | Arteev D S, Sakharov A V, Zavarin E E, Lundin W V, Rzheutski M V, Lutsenko E V, and Tsatsulnikov A F 2021 Semicond. Sci. Technol. 36 125007 | Localized-state ensemble model analysis of InGaN/GaN quantum well structures with different dislocation densities
[26] | Hidouri T, Mal I, Samajdar D P, Saidi F, and Das T D 2019 Superlattices Microstruct. 129 252 | Impact of localization phenomenon and temperature on the photoluminescence spectra of GaSbBi alloys and GaSbBi/GaAs quantum dots
[27] | Klochikhin A, Reznitsky A, Don Dal B, Priller H, Kalt H, Klingshirn C, Permogorov S, and Ivanov S 2004 Phys. Rev. B 69 085308 | Temperature dependence of photoluminescence bands in quantum wells with planar CdSe islands
[28] | Wright A D, Milot R L, Eperon G E, Snaith H J, Johnston M B, and Herz L M 2017 Adv. Funct. Mater. 27 1700860 | Band-Tail Recombination in Hybrid Lead Iodide Perovskite
[29] | Klingshirn C F 2007 Semiconductor Optics Third Edition (Springer-Verlag Berlin Heidelberg) p. 366 |
[30] | Grundmann M 2010 The Physics of Semiconductors 2nd edn (Berlin: Springer-Verlag) p 431 |
[31] | Xu Z Y, Lu Z D, Yuan Z L, Yang X P, Zheng B Z, Xu J Z, Ge W K, Wang Y, Wang J, and Chang L L 1998 Superlattices Microstruct. 23 381 | Thermal activation and thermal transfer of localized excitons in InAs self-organized quantum dots
[32] | Hidouri T, Saidi F, Maaref H, Rodriguez P, and Auvray L 2016 Opt. Mater. 62 267 | LSE investigation of the thermal effect on band gap energy and thermodynamic parameters of BInGaAs/GaAs Single Quantum Well
[33] | Ezzedini M, Hidouri T, M A H H, Sayari A, Shalaan E, Chauvin N, Sfaxi L, Saidi F, Al-Ghamdi A, Bru-Chevallier C, and Maaref H 2017 Nanoscale Res. Lett. 12 450 | Detecting Spatially Localized Exciton in Self-Organized InAs/InGaAs Quantum Dot Superlattices: a Way to Improve the Photovoltaic Efficiency
[34] | Arbia M B, Smiri B, Demir I, Saidi F, Altuntas I, Hassen F, and Maaref H 2022 Mater. Sci. Semicond. Process. 140 106411 | Theoretical analyses of the carrier localization effect on the photoluminescence of In-rich InGaAs layer grown on InP
[35] | Bao W, Su Z, Zheng C, Ning J, and Xu S 2016 Sci. Rep. 6 34545 | Carrier Localization Effects in InGaN/GaN Multiple-Quantum-Wells LED Nanowires: Luminescence Quantum Efficiency Improvement and “Negative” Thermal Activation Energy
[36] | Gong Y, Jiu L, Bruckbauer J, Bai J, Martin R W, and Wang T 2019 Sci. Rep. 9 986 | Monolithic multiple colour emission from InGaN grown on patterned non-polar GaN
[37] | Jiu L, Gong Y, and Wang T 2018 Sci. Rep. 8 9898 | Overgrowth and strain investigation of (11–20) non-polar GaN on patterned templates on sapphire
[38] | Xu S J, Li G Q, Xiong S J, and Che C M 2006 J. Appl. Phys. 99 073508 | Temperature dependence of the LO phonon sidebands in free exciton emission of GaN
[39] | Li Q, Xu S J, Xie M H, Tong S Y, Zhang X H, Liu W, and Chua S J 2002 Jpn. J. Appl. Phys. 41 L1093 | Strong Screening Effect of Photo-Generated Carriers on Piezoelectric Field in In0.13Ga0.87N/In0.03Ga0.97N Quantum Wells
[40] | Xu S J, Liu W, and Li M F 2002 Appl. Phys. Lett. 81 2959 | Direct determination of free exciton binding energy from phonon-assisted luminescence spectra in GaN epilayers
[41] | Yu L M, Lu B Y, Yu P, Wang Y, Ding G J, Feng Q, Jiang Y, Chen H, Huang K, Hao Z B, Yu J D, Luo Y, Sun C Z, Xiong B, Han Y J, Wang J, Li H T, and Wang L 2022 Appl. Phys. Lett. 121 042106 | Ultra-small size (1–20 μ m) blue and green micro-LEDs fabricated by laser direct writing lithography