[1] | Savary L and Balents L 2017 Rep. Prog. Phys. 80 016502 | Quantum spin liquids: a review
[2] | Keimer B and Moore J E 2017 Nat. Phys. 13 1045 | The physics of quantum materials
[3] | Zhou Y, Kanoda K, and Ng T K 2017 Rev. Mod. Phys. 89 025003 | Quantum spin liquid states
[4] | Anderson P W 1987 Science 235 1196 | The Resonating Valence Bond State in La2CuO4 and Superconductivity
[5] | Kitaev A 2006 Ann. Phys. 321 2 | Anyons in an exactly solved model and beyond
[6] | Furukawa T, Miyagawa K, Itou T, Ito M, Taniguchi H, Saito M, Sasaki T, and Kanoda K 2015 Phys. Rev. Lett. 115 077001 | Quantum Spin Liquid Emerging from Antiferromagnetic Order by Introducing Disorder
[7] | Savary L and Balents L 2017 Phys. Rev. Lett. 118 087203 | Disorder-Induced Quantum Spin Liquid in Spin Ice Pyrochlores
[8] | Kimchi I, McQueen T M, and Lee P A 2018 Nat. Commun. 9 4367 | Scaling and data collapse from local moments in frustrated disordered quantum spin systems
[9] | Ma Z, Wang J, Dong Z Y, Zhang J, Li S, Zheng S H, Yu Y, Wang W, Che L, Ran K, Bao S, Cai Z, Čermák P, Schneidewind A, Yano S, Gardner J S, Lu X, Yu S L, Liu J M, Li J X, and Wen J 2018 Phys. Rev. Lett. 120 087201 | Spin-Glass Ground State in a Triangular-Lattice Compound
[10] | Parker E and Balents L 2018 Phys. Rev. B 97 184413 | Finite-temperature behavior of a classical spin-orbit-coupled model for with and without bond disorder
[11] | Bramwell S T and Gingras M J P 2001 Science 294 1495 | Spin Ice State in Frustrated Magnetic Pyrochlore Materials
[12] | Balents L 2010 Nature 464 199 | Spin liquids in frustrated magnets
[13] | Broholm C, Cava R J, Kivelson S A, Norman M R, and Senthil T 2020 Science 367 eaay0668 | Quantum spin liquids
[14] | Sachdev S 1992 Phys. Rev. B 45 12377 | Kagome´- and triangular-lattice Heisenberg antiferromagnets: Ordering from quantum fluctuations and quantum-disordered ground states with unconfined bosonic spinons
[15] | Mila F 1998 Phys. Rev. Lett. 81 2356 | Low-Energy Sector of the Kagome Antiferromagnet
[16] | Bert F, Nakamae S, Ladieu F, L'Hôte D, Bonville P, Trombe J C, and Mendels P 2007 Phys. Rev. B 76 132411 | Low temperature magnetization of the kagome antiferromagnet
[17] | Helton J S, Matan K, Shores M P, Nytko E A, Bartlett B M, Yoshida Y, Takano Y, Suslov A, Qiu Y, Nocera D G, and Lee Y S 2007 Phys. Rev. Lett. 98 107204 | Spin Dynamics of the Spin- Kagome Lattice Antiferromagnet
[18] | Imai T, Nytko E A, Shores M P, and Nocera D G 2008 Phys. Rev. Lett. 100 077203 | , , and NMR in the Kagome Lattice
[19] | Mendels P, Bert F, de Vries M A, Olariu A, Harrison A, Duc F, Trombe J C, Amato A, and Baines C 2007 Phys. Rev. Lett. 98 077204 | Quantum Magnetism in the Paratacamite Family: Towards an Ideal Kagom? Lattice
[20] | Shores M P, Bartlett B M, and Nocera D G 2005 J. Am. Chem. Soc. 127 13462 | A Structurally Perfect S =1 /2 Kagomé Antiferromagnet
[21] | de Vries M A, Stewart J R, Deen P P, Piatek J O, Rønnow H M, and Harrison A 2009 Phys. Rev. Lett. 103 237201 | Scale-Free Antiferromagnetic Fluctuations in the Kagome Antiferromagnet Herbertsmithite
[22] | Sanders M B, Krizan J W, and Cava R J 2016 J. Mater. Chem. C 4 541 | RE3 Sb3 Zn2 O14 (RE = La, Pr, Nd, Sm, Eu, Gd): a new family of pyrochlore derivatives with rare earth ions on a 2D Kagome lattice
[23] | Ding Z F, Yang Y X, Zhang J, Tan C, Chen G, and Shu L 2018 Phys. Rev. B 98 174404 | Possible gapless spin liquid in the rare-earth kagome lattice magnet
[24] | Ma Z, Dong Z Y, Wu S, Zhu Y, Bao S, Cai Z, Wang W, Shangguan Y, Wang J, Ran K, Yu D, Deng G, Mole R A, Li H F, Li J X, and Wen J 2020 Phys. Rev. B 102 224415 | Disorder-induced spin-liquid-like behavior in kagome-lattice compounds
[25] | Toby B H and Von Dreele R B 2013 J. Appl. Crystallogr. 46 544 | GSAS-II : the genesis of a modern open-source all purpose crystallography software package
[26] | Toby B H 2001 J. Appl. Crystallogr. 34 210 | EXPGUI , a graphical user interface for GSAS
[27] | Hillier A D, Blundell S J, McKenzie I, Umegaki I, Shu L, Wright J A, Prokscha T, Bert F, Shimomura K, Alberto H, and Watanabe I 2022 Nat. Rev. Methods Primers 2 4 | Muon spin spectroscopy
[28] | Toby B H 2006 Powder Diffr. 21 67 | R factors in Rietveld analysis: How good is good enough?
[29] | Ashcroft N W and Mermin N D 1976 Solid State Physics (Holt-Saunders) |
[30] | Zhu Z H and Shu L 2020 Prog. Phys. 40 143 |
[31] | de Réotier P D and Yaouanc A 1997 J. Phys.: Condens. Matter 9 9113 | Muon spin rotation and relaxation in magnetic materials
[32] | Yang Y X, Wang Y, Hillier A D, and Shu L 2022 Phys. Rev. B 105 174418 | Three-dimensional sandglass magnet with non-Kramers ions
[33] | Dai P L, Zhang G, Xie Y, Duan C, Gao Y, Zhu Z, Feng E, Tao Z, Huang C L, Cao H, Podlesnyak A, Granroth G E, Everett M S, Neuefeind J C, Voneshen D, Wang S, Tan G, Morosan E, Wang X, Lin H Q, Shu L, Chen G, Lu X, and Dai P 2021 Phys. Rev. X 11 021044 | Spinon Fermi Surface Spin Liquid in a Triangular Lattice Antiferromagnet
[34] | Zhu Z H, Pan B L, Nie L P, Ni J M, Yang Y X, Chen C S, Huang Y Y, Cheng E J, Yu Y J, Hillier A D, Chen X H, Wu T, Li S Y, and Shu L 2021 arXiv:2112.06523 | Article identifier not recognized
[35] | Knolle J, Moessner R, and Perkins N B 2019 Phys. Rev. Lett. 122 047202 | Bond-Disordered Spin Liquid and the Honeycomb Iridate : Abundant Low-Energy Density of States from Random Majorana Hopping
[36] | Kao W H, Knolle J, Moessner R, and Perkins N B 2021 Phys. Rev. X 11 011034 | Vacancy-Induced Low-Energy Density of States in the Kitaev Spin Liquid