[1] | Barlow H B 1989 Neural Comput. 1 295 | Unsupervised Learning
[2] | Wang Y, Yao Q, Kwok J T, and Ni L M 2020 ACM Comput. Surv. 53 63 | Generalizing from a Few Examples
[3] | Molnar C 2022 Interpretable Machine Learning 2nd edn (Osano, Inc., A Public Benefit Corporation) |
[4] | Rudin C, Chen C, Chen Z, Huang H, Semenova L, and Zhong C 2022 Stat. Surv. 16 1 | Interpretable machine learning: Fundamental principles and 10 grand challenges
[5] | Gilpin L H, Bau D, Yuan B Z, Bajwa A, Specter M, and Kagal L 2018 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA) pp 80–89 |
[6] | Gordon, Greenspan, and Goldberger 2003 Proceedings Ninth IEEE International Conference on Computer Vision pp 370–377 |
[7] | Li F F, Fergus R, and Perona P 2003 Proceedings Ninth IEEE International Conference on Computer Vision pp 1134–114 |
[8] | Verstraete F, Murg V, and Cirac J I 2008 Adv. Phys. 57 143 | Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems
[9] | Cirac J I and Verstraete F 2009 J. Phys. A 42 504004 | Renormalization and tensor product states in spin chains and lattices
[10] | Ran S J, Tirrito E, Peng C, Chen X, Tagliacozzo L, Su G, and Lewenstein M 2020 Tensor Network Contractions: Methods and Applications to Quantum Many-Body Systems (Berlin: Springer) |
[11] | Orús R 2019 Nat. Rev. Phys. 1 538 | Tensor networks for complex quantum systems
[12] | Cirac J I, Pérez-García D, Schuch N, and Verstraete F 2021 Rev. Mod. Phys. 93 045003 | Matrix product states and projected entangled pair states: Concepts, symmetries, theorems
[13] | Biamonte J, Wittek P, Pancotti N, Rebentrost P, Wiebe N, and Lloyd S 2017 Nature 549 195 | Quantum machine learning
[14] | Stoudenmire E and Schwab D J 2016 Advances in Neural Information Processing Systems 29 (Curran Associates, Inc.) pp 4799–4807 |
[15] | Liu D, Ran S J, Wittek P, Peng C, García R B, Su G, and Lewenstein M 2019 New J. Phys. 21 073059 | Machine learning by unitary tensor network of hierarchical tree structure
[16] | Sun Z Z, Peng C, Liu D, Ran S J, and Su G 2020 Phys. Rev. B 101 075135 | Generative tensor network classification model for supervised machine learning
[17] | Cheng S, Wang L, and Zhang P 2021 Phys. Rev. B 103 125117 | Supervised learning with projected entangled pair states
[18] | Stoudenmire E M 2018 Quantum Sci. Technol. 3 034003 | Learning relevant features of data with multi-scale tensor networks
[19] | Han Z Y, Wang J, Fan H, Wang L, and Zhang P 2018 Phys. Rev. X 8 031012 | Unsupervised Generative Modeling Using Matrix Product States
[20] | Cheng S, Wang L, Xiang T, and Zhang P 2019 Phys. Rev. B 99 155131 | Tree tensor networks for generative modeling
[21] | Vieijra T, Vanderstraeten L, and Verstraete F 2022 arXiv:2202.08177 [quant-ph] | Generative modeling with projected entangled-pair states
[22] | Liu Y, Li W J, Zhang X, Lewenstein M, Su G, and Ran S J 2021 Front. Appl. Math. Stat. 7 716044 | Entanglement-Based Feature Extraction by Tensor Network Machine Learning
[23] | Ran S J, Sun Z Z, Fei S M, Su G, and Lewenstein M 2020 Phys. Rev. Res. 2 033293 | Tensor network compressed sensing with unsupervised machine learning
[24] | Wang J, Roberts C, Vidal G, and Leichenauer S 2020 arXiv:2006.02516 | Article identifier not recognized
[25] | Wang K, Xiao L, Yi W, Ran S J, and Xue P 2021 Photon. Res. 9 2332 | Experimental realization of a quantum image classifier via tensor-network-based machine learning
[26] | Wall M L, Abernathy M R, and Quiroz G 2021 Phys. Rev. Res. 3 023010 | Generative machine learning with tensor networks: Benchmarks on near-term quantum computers
[27] | Deng L 2012 IEEE Signal Process. Mag. 29 141 |
[28] | Xiao H, Rasul K, and Vollgraf R 2017 arXiv:1708.07747 [cs.LG] | Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms
[29] | Solorio-Fernández S, Carrasco-Ochoa J A, and Martínez-Trinidad J F 2020 Artificial Intell. Rev. 53 907 | A review of unsupervised feature selection methods
[30] | Varshavsky R, Gottlieb A, Linial M, and Horn D 2006 Bioinformatics 22 e507 | Novel Unsupervised Feature Filtering of Biological Data
[31] | Tabakhi S, Najafi A, Ranjbar R, and Moradi P 2015 Neurocomputing 168 1024 | Gene selection for microarray data classification using a novel ant colony optimization
[32] | Dy J G and Brodley C E 2004 J. Mach. Learn. Res. 5 845 |
[33] | Kim S B and Rattakorn P 2011 Expert Syst. Appl. 38 5704 | Unsupervised feature selection using weighted principal components
[34] | Yao J, Mao Q, Goodison S, Mai V, and Sun Y 2015 Pattern Recognit. Lett. 53 100 | Feature selection for unsupervised learning through local learning
[35] | Cardona A, Saalfeld S, Preibisch S, Schmid B, Cheng A, Pulokas J, Tomancak P, and Hartenstein V 2010 PLOS Biol. 8 e1000502 | An Integrated Micro- and Macroarchitectural Analysis of the Drosophila Brain by Computer-Assisted Serial Section Electron Microscopy
[36] | Here we avoid to use Dirac's symbols for readers who are not familiar with quantum physics. We use a bold letter to represent a tensor (or matrix, vector, such as ${\boldsymbol\varPsi}$), and the same normal letter with lower indexes to represent the tensor elements (such as $\varPsi_{s_1}\ldots{s_{_{\scriptstyle M}}}$). |
[37] | Pérez-García D, Verstraete F, Wolf M M, and Cirac J I 2007 Quantum Inf. Comput. 7 401 |
[38] | Oseledets I V 2011 SIAM J. Sci. Comput. 33 2295 | Tensor-Train Decomposition
[39] | White S R 1992 Phys. Rev. Lett. 69 2863 | Density matrix formulation for quantum renormalization groups
[40] | White S R 1993 Phys. Rev. B 48 10345 | Density-matrix algorithms for quantum renormalization groups