[1] | Nakahara M 2018 Geometry, Topology and Physics (New York: CRC Press) |
[2] | Wu T T and Yang C N 1975 Phys. Rev. D 12 3845 | Concept of nonintegrable phase factors and global formulation of gauge fields
[3] | Wu T T and Yang C N 1976 Nucl. Phys. B 107 365 | Dirac monopole without strings: Monopole harmonics
[4] | Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045 | Colloquium : Topological insulators
[5] | Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057 | Topological insulators and superconductors
[6] | Goldman N, Juzeliūnas G, Öhberg P, and Spielman I B 2014 Rep. Prog. Phys. 77 126401 | Light-induced gauge fields for ultracold atoms
[7] | Armitage N P, Mele E J, and Vishwanath A 2018 Rev. Mod. Phys. 90 015001 | Weyl and Dirac semimetals in three-dimensional solids
[8] | Zhang D W, Zhu Y Q, Zhao Y X, Yan H, and Zhu S L 2018 Adv. Phys. 67 253 | Topological quantum matter with cold atoms
[9] | Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, and Carusotto I 2019 Rev. Mod. Phys. 91 015006 | Topological photonics
[10] | Buluta I and Nori F 2009 Science 326 108 | Quantum Simulators
[11] | Bliokh K Y, Smirnova D, and Nori F 2015 Science 348 1448 | Quantum spin Hall effect of light
[12] | Provost J P and Vallee G 1980 Commun. Math. Phys. 76 289 | Riemannian structure on manifolds of quantum states
[13] | Campos Venuti L and Zanardi P 2007 Phys. Rev. Lett. 99 095701 | Quantum Critical Scaling of the Geometric Tensors
[14] | Ma Y Q, Chen S, Fan H, and Liu W M 2010 Phys. Rev. B 81 245129 | Abelian and non-Abelian quantum geometric tensor
[15] | Aharonov Y and Bohm D 1959 Phys. Rev. 115 485 | Significance of Electromagnetic Potentials in the Quantum Theory
[16] | Wen X G 1991 Phys. Rev. B 44 2664 | Mean-field theory of spin-liquid states with finite energy gap and topological orders
[17] | Wen X G 2017 Rev. Mod. Phys. 89 041004 | Colloquium : Zoo of quantum-topological phases of matter
[18] | Zanardi P and Rasetti M 1999 Phys. Lett. A 264 94 | Holonomic quantum computation
[19] | Pachos J, Zanardi P, and Rasetti M 1999 Phys. Rev. A 61 010305(R) | Non-Abelian Berry connections for quantum computation
[20] | Bohm A, Mostafazadeh A, Koizumi H, Niu Q, and Zwanziger J 2003 The Geometric Phase in Quantum Systems: Foundations, Mathematical Concepts, and Applications in Molecular and Condensed Matter Physics (Berlin: Springe-Verlag) |
[21] | Zhu S L and Wang Z D 2003 Phys. Rev. Lett. 91 187902 | Unconventional Geometric Quantum Computation
[22] | Zhu S L and Zanardi P 2005 Phys. Rev. A 72 020301(R) | Geometric quantum gates that are robust against stochastic control errors
[23] | Filipp S, Klepp J, Hasegawa Y, Plonka-Spehr C, Schmidt U, Geltenbort P, and Rauch H 2009 Phys. Rev. Lett. 102 030404 | Experimental Demonstration of the Stability of Berry’s Phase for a Spin- Particle
[24] | Zhao P Z, Cui X D, Xu G F, Sjöqvist E, and Tong D M 2017 Phys. Rev. A 96 052316 | Rydberg-atom-based scheme of nonadiabatic geometric quantum computation
[25] | Wootters W K 1981 Phys. Rev. D 23 357 | Statistical distance and Hilbert space
[26] | Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439 | Statistical distance and the geometry of quantum states
[27] | Zanardi P and Paunković N 2006 Phys. Rev. E 74 031123 | Ground state overlap and quantum phase transitions
[28] | Zanardi P, Giorda P, and Cozzini M 2007 Phys. Rev. Lett. 99 100603 | Information-Theoretic Differential Geometry of Quantum Phase Transitions
[29] | Sachdev S 2011 Quantum Phase Transitions 2nd edn (Cambridge: Cambridge University Press) |
[30] | Carollo A, Valenti D, and Spagnolo B 2020 Phys. Rep. 838 1 | Geometry of quantum phase transitions
[31] | Dey A, Mahapatra S, Roy P, and Sarkar T 2012 Phys. Rev. E 86 031137 | Information geometry and quantum phase transitions in the Dicke model
[32] | Dirac P A M 1931 Proc. R. Soc. Lond. A 133 60 | Quantised singularities in the electromagnetic field,
[33] | Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959 | Berry phase effects on electronic properties
[34] | Ray M W, Ruokokoski E, Kandel S, Möttönen M, and Hall D S 2014 Nature 505 657 | Observation of Dirac monopoles in a synthetic magnetic field
[35] | Palumbo G and Goldman N 2018 Phys. Rev. Lett. 121 170401 | Revealing Tensor Monopoles through Quantum-Metric Measurements
[36] | Tan X, Zhang D W, Zheng W, Yang X, Song S, Han Z, Dong Y, Wang Z, Lan D, Yan H, Zhu S L, and Yu Y 2021 Phys. Rev. Lett. 126 017702 | Experimental Observation of Tensor Monopoles with a Superconducting Qudit
[37] | Chen M, Li C, Palumbo G, Zhu Y Q, Goldman N, and Cappellaro P 2022 Science 375 1017 | A synthetic monopole source of Kalb-Ramond field in diamond
[38] | Zhang S C and Hu J 2001 Science 294 823 | A Four-Dimensional Generalization of the Quantum Hall Effect
[39] | Yang C N 1978 J. Math. Phys. 19 320 | Generalization of Dirac’s monopole to SU2 gauge fields
[40] | Sugawa S, Salces-Carcoba F, Perry A R, Yue Y, and Spielman I B 2018 Science 360 1429 | Second Chern number of a quantum-simulated non-Abelian Yang monopole
[41] | Kolodrubetz M 2016 Phys. Rev. Lett. 117 015301 | Measuring the Second Chern Number from Nonadiabatic Effects
[42] | Weisbrich H, Klees R, Rastelli G, and Belzig W 2021 PRX Quantum 2 010310 | Second Chern Number and Non-Abelian Berry Phase in Topological Superconducting Systems
[43] | Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 | Appearance of Gauge Structure in Simple Dynamical Systems
[44] | Duan L M, Cirac J I, and Zoller P 2001 Science 292 1695 | Geometric Manipulation of Trapped Ions for Quantum Computation
[45] | Sugawa S, Salces-Carcoba F, Yue Y, Putra A, and Spielman I B 2021 npj Quantum Inf. 7 144 | Wilson loop and Wilczek-Zee phase from a non-Abelian gauge field
[46] | Nayak C, Simon S H, Stern A, Freedman M, and Sarma S D 2008 Rev. Mod. Phys. 80 1083 | Non-Abelian anyons and topological quantum computation
[47] | Sjöqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M, and Singh K 2012 New J. Phys. 14 103035 | Non-adiabatic holonomic quantum computation
[48] | Xu G F, Zhang J, Tong D M, Sjöqvist E, and Kwek L C 2012 Phys. Rev. Lett. 109 170501 | Nonadiabatic Holonomic Quantum Computation in Decoherence-Free Subspaces
[49] | Oreshkov O, Brun T A, and Lidar D A 2009 Phys. Rev. Lett. 102 070502 | Fault-Tolerant Holonomic Quantum Computation
[50] | Wu L A, Zanardi P, and Lidar D A 2005 Phys. Rev. Lett. 95 130501 | Holonomic Quantum Computation in Decoherence-Free Subspaces
[51] | Ozawa T and Goldman N 2018 Phys. Rev. B 97 201117(R) | Extracting the quantum metric tensor through periodic driving
[52] | Tan X, Zhang D W, Yang Z, Chu J, Zhu Y Q, Li D, Yang X, Song S, Han Z, Li Z, Dong Y, Yu H F, Yan H, Zhu S L, and Yu Y 2019 Phys. Rev. Lett. 122 210401 | Experimental Measurement of the Quantum Metric Tensor and Related Topological Phase Transition with a Superconducting Qubit
[53] | Yu M et al. 2019 Natl. Sci. Rev. 7 254 | Experimental measurement of the quantum geometric tensor using coupled qubits in diamond
[54] | Weisbrich H, Rastelli G, and Belzig W 2021 Phys. Rev. Res. 3 033122 | Geometrical Rabi oscillations and Landau-Zener transitions in non-Abelian systems
[55] | McKay D C, Filipp S, Mezzacapo A, Magesan E, Chow J M, and Gambetta J M 2016 Phys. Rev. Appl. 6 064007 | Universal Gate for Fixed-Frequency Qubits via a Tunable Bus
[56] | Reagor M et al. 2018 Sci. Adv. 4 eaao3603 | Demonstration of universal parametric entangling gates on a multi-qubit lattice
[57] | Chu J, Li D, Yang X, Song S, Han Z, Yang Z, Dong Y, Zheng W, Wang Z, Yu X, Lan D, Tan X, and Yu Y 2020 Phys. Rev. Appl. 13 064012 | Realization of Superadiabatic Two-Qubit Gates Using Parametric Modulation in Superconducting Circuits
[58] | Bernevig B A, Hughes T L, and Zhang S C 2006 Science 314 1757 | Quantum Spin Hall Effect and Topological Phase Transition in HgTe Quantum Wells
[59] | Lv Q X, Du Y X, Liang Z T, Liu H Z, Liang J H, Chen L Q, Zhou L M, Zhang S C, Zhang D W, Ai B Q, Yan H, and Zhu S L 2021 Phys. Rev. Lett. 127 136802 | Measurement of Spin Chern Numbers in Quantum Simulated Topological Insulators
[60] | Haldane F D M 1988 Phys. Rev. Lett. 61 2015 | Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"
[61] | Zhang A 2022 Chin. Phys. B 31 040201 | Revealing Chern number from quantum metric
[62] | von Gersdorff G and Chen W 2021 Phys. Rev. B 104 195133 | Measurement of topological order based on metric-curvature correspondence
[63] | Mera B, Zhang A, and Goldman N 2022 SciPost Phys. 12 018 | Relating the topology of Dirac Hamiltonians to quantum geometry: When the quantum metric dictates Chern numbers and winding numbers
[64] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 146802 | Topological Order and the Quantum Spin Hall Effect
[65] | Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801 | Quantum Spin Hall Effect in Graphene
[66] | Sheng L, Sheng D N, Ting C S, and Haldane F D M 2005 Phys. Rev. Lett. 95 136602 | Nondissipative Spin Hall Effect via Quantized Edge Transport
[67] | Sheng D N, Weng Z Y, Sheng L, and Haldane F D M 2006 Phys. Rev. Lett. 97 036808 | Quantum Spin-Hall Effect and Topologically Invariant Chern Numbers
[68] | Sheng L, Li H C, Yang Y Y, Sheng D N, and Xing D Y 2013 Chin. Phys. B 22 067201 | Spin Chern numbers and time-reversal-symmetry-broken quantum spin Hall effect