[1] | Das A 1989 Integrable Models (Singapore: World Scientific) |
[2] | Haberman R 2013 Applied Partial Differential Equations 5th edn (New Jersey: Pearson) |
[3] | Ablowitz M J and Segur H 1981 Solitons and the Inverse Scattering Transform (Philadelphia: SIAM) |
[4] | Drazin P G and Johnson R S 1989 Solitons: An Introduction (Cambridge: Cambridge University Press) |
[5] | Ablowitz M J and Musslimani Z H 2017 Stud. Appl. Math. 139 7 | Integrable Nonlocal Nonlinear Equations
[6] | Ma W X 2020 Appl. Math. Lett. 102 106161 | Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations
[7] | Ma W X, Huang Y H, and Wang F D 2020 Stud. Appl. Math. 145 563 | Inverse scattering transforms and soliton solutions of nonlocal reverse‐space nonlinear Schrödinger hierarchies
[8] | Ma W X 2019 Nonlinear Anal.: Real World Appl. 47 1 | Application of the Riemann–Hilbert approach to the multicomponent AKNS integrable hierarchies
[9] | Ma W X 2022 Mod. Phys. Lett. B 36 2250094 | A novel kind of reduced integrable matrix mKdV equations and their binary Darboux transformations
[10] | Ma W X 2021 Partial Differ. Equ. Appl. Math. 4 100190 | Nonlocal PT-symmetric integrable equations and related Riemann–Hilbert problems
[11] | Novikov S P, Manakov S V, Pitaevskii L P, and Zakharov V E 1984 Theory of Solitons: the Inverse Scattering Method (New York: Consultants Bureau) |
[12] | Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM) |
[13] | Wang D S, Zhang D J, and Yang J 2010 J. Math. Phys. 51 023510 | Integrable properties of the general coupled nonlinear Schrödinger equations
[14] | Xiao Y and Fan E G 2016 Chin. Ann. Math. Ser. B 37 373 | A Riemann-Hilbert approach to the Harry-Dym equation on the line
[15] | Geng X G and Wu J P 2016 Wave Motion 60 62 | Riemann–Hilbert approach and N-soliton solutions for a generalized Sasa–Satsuma equation
[16] | Yang J 2019 Phys. Lett. A 383 328 | General N-solitons and their dynamics in several nonlocal nonlinear Schrödinger equations
[17] | Ma W X 2021 Proc. Am. Math. Soc. 149 251 | Inverse scattering and soliton solutions of nonlocal reverse-spacetime nonlinear Schrödinger equations
[18] | Ma W X 2022 Acta Math. Acad. Sci. Hung. 42B 127 |
[19] | Ma W X 2022 J. Geom. Phys. 177 104522 | Nonlocal integrable mKdV equations by two nonlocal reductions and their soliton solutions
[20] | Hasegawa A 1989 Optical Solitons in Fibers (Berlin: Springer) |
[21] | Svinolupov S I and Sokolov V V 1994 Theor. Math. Phys. 100 959 | Vector-matrix generalizations of classical integrable equations
[22] | Aristophanes D and Müller-Hoissen F 2010 Inverse Probl. 26 095007 | Solutions of matrix NLS systems and their discretizations: a unified treatment
[23] | Cao Q H and Dai C Q 2021 Chin. Phys. Lett. 38 090501 | Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schrödinger Equation
[24] | Wen X K, Feng R, Lin J H, Liu W, Chen F, and Yang Q 2021 Optik 248 168092 | Distorted light bullet in a tapered graded-index waveguide with PT symmetric potentials
[25] | Fang Y, Wu G Z, Wen X K, Wang Y Y, and Dai C Q 2022 Opt. Laser Technol. 155 108428 | Predicting certain vector optical solitons via the conservation-law deep-learning method
[26] | Whitham G B 1974 Linear and Nonlinear Waves (New York: John Wiley) |
[27] | Ma W X 2022 Physica D 430 133078 | Riemann–Hilbert problems and inverse scattering of nonlocal real reverse-spacetime matrix AKNS hierarchies
[28] | Ma W X 2019 Math. Methods Appl. Sci. 42 1099 | Riemann‐Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction
[29] | Zhang H Q and Chen F 2021 Chaos 31 023129 | Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background
[30] | Ma W X 2021 Symmetry 13 2205 | Integrable Nonlocal PT-Symmetric Modified Korteweg-de Vries Eq. (3, \({\mathbb{R}}\))
[31] | Ma W X 2022 Proc. Amer. Math. Soc. Ser. B 9 1 | Integrable nonlocal nonlinear Schrödinger equations associated with 𝑠𝑜(3,ℝ)
[32] | Xin X P, Liu Y T, Xia Y R, and Liu H Z 2021 Appl. Math. Lett. 119 107209 | Integrability, Darboux transformation and exact solutions for nonlocal couplings of AKNS equations
[33] | Wazwaz A M 2021 Waves Random Complex Media 31 867 | Two new integrable modified KdV equations, of third-and fifth-order, with variable coefficients: multiple real and multiple complex soliton solutions
[34] | Ma W X and Zhou Y 2018 J. Differ. Equ. 264 2633 | Lump solutions to nonlinear partial differential equations via Hirota bilinear forms
[35] | Sulaiman T A, Yusuf A, Abdeljabbar A, and Alquran M 2021 J. Geom. Phys. 169 104347 | Dynamics of lump collision phenomena to the (3+1)-dimensional nonlinear evolution equation
[36] | Xu Z X and Chow K W 2016 Appl. Math. Lett. 56 72 | Breathers and rogue waves for a third order nonlocal partial differential equation by a bilinear transformation
[37] | Rao J G, Z, Y S, Fokas A S, and He J S 2018 Nonlinearity 31 4090 | Rogue waves of the nonlocal Davey–Stewartson I equation
[38] | Ma W X and You Y 2005 Trans. Am. Math. Soc. 357 1753 | Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions
[39] | Abdeljabbar A 2021 Partial Differ. Equ. Appl. Math. 3 100022 | New double Wronskian exact solutions for a generalized (2+1)-dimensional nonlinear system with variable coefficients
[40] | Gesztesy F and Holden H 2003 Soliton Equations and Their Algebro-Geometric Solutions: (1+1)-Dimensional Continuous Models (Cambridge: Cambridge University Press) |
[41] | Geng X G, Liu W, and Xue B 2019 Results Math. 74 11 | Finite Genus Solutions to the Coupled Burgers Hierarchy
[42] | Ma W X 2019 Mathematics 7 573 | Long-Time Asymptotics of a Three-Component Coupled mKdV System
[43] | Wazwaz A M 2006 Math. Comput. Model. 43 802 | Exact solutions for the fourth order nonlinear Schrodinger equations with cubic and power law nonlinearities
[44] | Segata J 2004 Proc. Am. Math. Soc. 132 3559 | Remark on well-posedness for the fourth order nonlinear Schrödinger type equation
[45] | Liu W H, Liu Y, Zhang Y F, and Shi D D 2019 Mod. Phys. Lett. B 33 1950416 | Riemann–Hilbert approach for multi-soliton solutions of a fourth-order nonlinear Schrödinger equation