[1] | Bogdanov A and Hubert A 1994 J. Magn. Magn. Mater. 138 255 | Thermodynamically stable magnetic vortex states in magnetic crystals
[2] | Bogdanov A N and Rößler U K 2001 Phys. Rev. Lett. 87 037203 | Chiral Symmetry Breaking in Magnetic Thin Films and Multilayers
[3] | Fert A, Reyren N, and Cros V 2017 Nat. Rev. Mater. 2 17031 | Magnetic skyrmions: advances in physics and potential applications
[4] | Zang J et al. 2011 Phys. Rev. Lett. 107 136804 | Dynamics of Skyrmion Crystals in Metallic Thin Films
[5] | Nagaosa N and Tokura Y 2013 Nat. Nanotechnol. 8 899 | Topological properties and dynamics of magnetic skyrmions
[6] | Koshibae W et al. 2015 Jpn. J. Appl. Phys. 54 053001 | Memory functions of magnetic skyrmions
[7] | Chen G et al. 2015 Appl. Phys. Lett. 106 242404 | Room temperature skyrmion ground state stabilized through interlayer exchange coupling
[8] | Braun H B 2012 Adv. Phys. 61 1 | Topological effects in nanomagnetism: from superparamagnetism to chiral quantum solitons
[9] | Buettner F et al. 2015 Nat. Phys. 11 225 | Dynamics and inertia of skyrmionic spin structures
[10] | Yang S H et al. 2021 Nat. Rev. Phys. 3 328 | Chiral spintronics
[11] | Gobel B, Mertig I, and Tretiakov O A 2021 Phys. Rep. 895 1 | Beyond skyrmions: Review and perspectives of alternative magnetic quasiparticles
[12] | Back C et al. 2020 J. Phys. D 53 363001 | The 2020 skyrmionics roadmap
[13] | Everschor-Sitte K et al. 2018 J. Appl. Phys. 124 240901 | Perspective: Magnetic skyrmions—Overview of recent progress in an active research field
[14] | Skyrme T H R 1961 Proc. R. Soc. A 262 237 | Bosonization
[15] | Bogdanov N Y and Yablonskii D A 1989 Sov. Phys.-JETP 68 101 |
[16] | Huang S X and Chien C L 2012 Phys. Rev. Lett. 108 267201 | Extended Skyrmion Phase in Epitaxial Thin Films
[17] | Yu X Z et al. 2010 Nature 465 901 | Real-space observation of a two-dimensional skyrmion crystal
[18] | Shibata K et al. 2013 Nat. Nanotechnol. 8 723 | Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin–orbit coupling
[19] | Ritz R et al. 2013 Nature 497 231 | Formation of a topological non-Fermi liquid in MnSi
[20] | Neubauer A et al. 2009 Phys. Rev. Lett. 102 186602 | Topological Hall Effect in the Phase of MnSi
[21] | Pappas C et al. 2009 Phys. Rev. Lett. 102 197202 | Chiral Paramagnetic Skyrmion-like Phase in MnSi
[22] | Tonomura A et al. 2012 Nano Lett. 12 1673 | Real-Space Observation of Skyrmion Lattice in Helimagnet MnSi Thin Samples
[23] | Yu X Z et al. 2013 Nano Lett. 13 3755 | Observation of the Magnetic Skyrmion Lattice in a MnSi Nanowire by Lorentz TEM
[24] | Du H F et al. 2014 Nano Lett. 14 2026 | Highly Stable Skyrmion State in Helimagnetic MnSi Nanowires
[25] | Jonietz F et al. 2010 Science 330 1648 | Spin Transfer Torques in MnSi at Ultralow Current Densities
[26] | Kindervater J et al. 2019 Phys. Rev. X 9 041059 | Weak Crystallization of Fluctuating Skyrmion Textures in MnSi
[27] | Heinze S et al. 2011 Nat. Phys. 7 713 | Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions
[28] | Romming N et al. 2013 Science 341 636 | Writing and Deleting Single Magnetic Skyrmions
[29] | Emori S et al. 2013 Nat. Mater. 12 611 | Current-driven dynamics of chiral ferromagnetic domain walls
[30] | Boulle O et al. 2016 Nat. Nanotechnol. 11 449 | Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures
[31] | DeRosa M C et al. 2010 Nat. Nanotechnol. 5 91 | Nanotechnology in fertilizers
[32] | Pizzini S et al. 2014 Phys. Rev. Lett. 113 047203 | Chirality-Induced Asymmetric Magnetic Nucleation in Ultrathin Microstructures
[33] | Jiang W et al. 2017 Phys. Rep. 704 1 | Skyrmions in magnetic multilayers
[34] | Dupe B et al. 2016 Nat. Commun. 7 11779 | Engineering skyrmions in transition-metal multilayers for spintronics
[35] | Woo S et al. 2016 Nat. Mater. 15 501 | Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets
[36] | Jiang W et al. 2015 Science 349 283 | Blowing magnetic skyrmion bubbles
[37] | Li W et al. 2019 Adv. Mater. 31 1807683 | Anatomy of Skyrmionic Textures in Magnetic Multilayers
[38] | Moreau-Luchaire C et al. 2016 Nat. Nanotechnol. 11 444 | Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature
[39] | Legrand W et al. 2017 Nano Lett. 17 2703 | Room-Temperature Current-Induced Generation and Motion of sub-100 nm Skyrmions
[40] | Jiang W et al. 2019 Phys. Rev. B 99 104402 | Quantifying chiral exchange interaction for Néel-type skyrmions via Lorentz transmission electron microscopy
[41] | Pollard S D et al. 2017 Nat. Commun. 8 14761 | Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy
[42] | Soumyanarayanan A et al. 2017 Nat. Mater. 16 898 | Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers
[43] | Raju M et al. 2019 Nat. Commun. 10 696 | The evolution of skyrmions in Ir/Fe/Co/Pt multilayers and their topological Hall signature
[44] | Guang Y et al. 2020 Nat. Commun. 11 949 | Creating zero-field skyrmions in exchange-biased multilayers through X-ray illumination
[45] | Zhou H A et al. 2021 Adv. Funct. Mater. 31 2104426 | Rare‐Earth Permanent Magnet SmCo 5 for Chiral Interfacial Spin‐Orbitronics
[46] | Caretta L et al. 2018 Nat. Nanotechnol. 13 1154 | Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet
[47] | Fert A, Cros V, and Sampaio J 2013 Nat. Nanotechnol. 8 152 | Skyrmions on the track
[48] | Parkin S S P, Hayashi M, and Thomas L 2008 Science 320 190 | Magnetic Domain-Wall Racetrack Memory
[49] | Iwasaki J, Mochizuki M, and Nagaosa N 2013 Nat. Nanotechnol. 8 742 | Current-induced skyrmion dynamics in constricted geometries
[50] | Sampaio J et al. 2013 Nat. Nanotechnol. 8 839 | Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures
[51] | Ding J J, Yang X F, and Zhu T 2015 J. Phys. D 48 115004 | Manipulating current induced motion of magnetic skyrmions in the magnetic nanotrack
[52] | Schulz T et al. 2012 Nat. Phys. 8 301 | Emergent electrodynamics of skyrmions in a chiral magnet
[53] | Wang Z et al. 2020 Nat. Electron. 3 672 | Thermal generation, manipulation and thermoelectric detection of skyrmions
[54] | Sinova J et al. 2015 Rev. Mod. Phys. 87 1213 | Spin Hall effects
[55] | Yu G Q et al. 2016 Nano Lett. 16 1981 | Room-Temperature Creation and Spin–Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry
[56] | Tomasello R et al. 2018 Phys. Rev. B 97 060402(R) | Origin of temperature and field dependence of magnetic skyrmion size in ultrathin nanodots
[57] | Lemesh I et al. 2018 Adv. Mater. 30 1805461 | Current‐Induced Skyrmion Generation through Morphological Thermal Transitions in Chiral Ferromagnetic Heterostructures
[58] | Landau L D and Lifshitz E M 1935 Phys. Z. Sowjetunion 8 153 |
[59] | Buttner F et al. 2017 Nat. Nanotechnol. 12 1040 | Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques
[60] | Rohart S and Thiaville A 2013 Phys. Rev. B 88 184422 | Skyrmion confinement in ultrathin film nanostructures in the presence of Dzyaloshinskii-Moriya interaction
[61] | Bernand-Mantel A et al. 2020 Phys. Rev. B 101 045416 | Unraveling the role of dipolar versus Dzyaloshinskii-Moriya interactions in stabilizing compact magnetic skyrmions
[62] | Zheng F et al. 2018 Nat. Nanotechnol. 13 451 | Experimental observation of chiral magnetic bobbers in B20-type FeGe
[63] | Ran K et al. 2021 Phys. Rev. Lett. 126 017204 | Creation of a Chiral Bobber Lattice in Helimagnet-Multilayer Heterostructures
[64] | Zhu J et al. 2021 Sci. Chin. Phys. Mech. & Astron. 64 227511 | Current-driven transformations of a skyrmion tube and a bobber in stepped nanostructures of chiral magnets
[65] | Gong Z Z et al. 2021 Phys. Rev. B 104 L100412 | Current-induced dynamics and tunable spectra of a magnetic chiral bobber