[1] | Lee P A, Nagaosa N, and Wen X G 2006 Rev. Mod. Phys. 78 17 | Doping a Mott insulator: Physics of high-temperature superconductivity
[2] | Keimer B, Kivelson S A, Norman M R, Uchida S, and Zaanen J 2015 Nature 518 179 | From quantum matter to high-temperature superconductivity in copper oxides
[3] | Hanaguri T, Lupien C, Kohsaka Y et al. 2004 Nature 430 1001 | A ‘checkerboard’ electronic crystal state in lightly hole-doped Ca2-xNaxCuO2Cl2
[4] | Hoffman J, Hudson E W, Lang K et al. 2002 Science 295 466 | A Four Unit Cell Periodic Pattern of Quasi-Particle States Surrounding Vortex Cores in Bi 2 Sr 2 CaCu 2 O 8+δ
[5] | Ronning F, Kim C, Feng D et al. 1998 Science 282 2067 | Photoemission Evidence for a Remnant Fermi Surface and a d- Wave-Like Dispersion in Insulating Ca 2 CuO 2 Cl 2
[6] | Zaanen J, Sawatzky G A, and Allen J W 1985 Phys. Rev. Lett. 55 418 | Band gaps and electronic structure of transition-metal compounds
[7] | Zhang F C and Rice T 1988 Phys. Rev. B 37 3759 | Effective Hamiltonian for the superconducting Cu oxides
[8] | Han X J, Liu Y, Liu Z Y et al. 2016 New J. Phys. 18 103004 | Charge dynamics of the antiferromagnetically ordered Mott insulator
[9] | Han X J, Chen C, Chen J et al. 2019 Phys. Rev. B 99 245150 | Finite-temperature charge dynamics and the melting of the Mott insulator
[10] | Kane C, Lee P, and Read N 1989 Phys. Rev. B 39 6880 | Motion of a single hole in a quantum antiferromagnet
[11] | Ding W and Si Q 2018 arXiv:1810.03309 [cond-mat.str-el] | Local Density of States induced near Impurities in Mott Insulators
[12] | Falck J P, Levy A, Kastner M A, and Birgeneau R 1992 Phys. Rev. Lett. 69 1109 | Charge-transfer spectrum and its temperature dependence in
[13] | Kim C, Ronning F, Damascelli A et al. 2002 Phys. Rev. B 65 174516 | Anomalous temperature dependence in the photoemission spectral function of cuprates
[14] | Choi H, Choi E, and Kim Y 1998 Physica C 304 66 | Temperature dependence of the mid-infrared absorptions in undoped cuprate Sr2CuO2Cl2
[15] | Zenitani Y, Inari K, Sahoda S et al. 1995 Physica C 248 167 | Superconductivity in (Ca, Na)2CaCu2O4Cl2 The new simplest double-layer cuprate with apical chlorine
[16] | Jin C Q, Wu X J, Laffez P et al. 1995 Nature 375 301 | Superconductivity at 80 K in (Sr,Ca)3Cu2O4+δCl2-y induced by apical oxygen doping
[17] | Ruan W, Hu C, Zhao J et al. 2016 Sci. Bull. 61 1826 | Relationship between the parent charge transfer gap and maximum transition temperature in cuprates
[18] | Zhao J F, Cao L P, Li W et al. 2019 Sci. Chin. Phys. Mech. Astron. 62 1 |
[19] | Vaknin D, Miller L, Zarestky J 1997 Phys. Rev. B 56 8351 | Stacking of the square-lattice antiferromagnetic planes in
[20] | Ye C, Cai P, Yu R Z et al. 2013 Nat. Commun. 4 1365 | Visualizing the atomic-scale electronic structure of the Ca2CuO2Cl2 Mott insulator
[21] | Ugeda M M, Bradley A J, Shi S F et al. 2014 Nat. Mater. 13 1091 | Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor
[22] | Li H W, Ye S S, Zhao J F, Jin C Q, and Wang Y Y 2021 Sci. Bull. 66 1395 | Imaging the atomic-scale electronic states induced by a pair of hole dopants in Ca2CuO2Cl2 Mott insulator
[23] | Varshni Y P 1967 Physica 34 149 | Temperature dependence of the energy gap in semiconductors
[24] | Tohyama T and Maekawa S 2000 Supercond. Sci. Technol. 13 R17 | Angle-resolved photoemission in high T c cuprates from theoretical viewpoints
[25] | Slater J 1951 Phys. Rev. 82 538 | Magnetic Effects and the Hartree-Fock Equation
[26] | Vecchio I L, Perucchi A, Di Pietro P et al. 2013 Sci. Rep. 3 2990 | Infrared evidence of a Slater metal-insulator transition in NaOsO3
[27] | Vaknin D, Sinha S, Stassis C, Miller L, and Johnston D 1990 Phys. Rev. B 41 1926 | Antiferromagnetism in
[28] | Kamra A, Thingstad E, Rastelli G et al. 2019 Phys. Rev. B 100 174407 | Antiferromagnetic magnons as highly squeezed Fock states underlying quantum correlations
[29] | Mermin N D and Wagner H 1966 Phys. Rev. Lett. 17 1133 | Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models