Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor \nu=2/5
-
Abstract
Quantum Hall effects with multicomponent internal degrees of freedom facilitate the playground of novel emergent topological orders. Here, we explore the correlated topological phases of two-component hardcore bosons at a total filling factor \nu=2/5 in topological lattice models under the interplay of intracomponent and intercomponent repulsions. We give the numerical demonstration of the emergence of Halperin (441) fractional quantum Hall effect based on exact diagonalization and density-matrix renormalization group methods. We elucidate its topological features including the degeneracy of the ground state, fractionally quantized topological Chern number matrix and chiral edge modes.
Article Text
-
-
-
About This Article
Cite this article:
Tian-Sheng Zeng, Liangdong Hu, W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 017301. DOI: 10.1088/0256-307X/39/1/017301
Tian-Sheng Zeng, Liangdong Hu, W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 017301. DOI: 10.1088/0256-307X/39/1/017301
|
Tian-Sheng Zeng, Liangdong Hu, W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 017301. DOI: 10.1088/0256-307X/39/1/017301
Tian-Sheng Zeng, Liangdong Hu, W. Zhu. Bosonic Halperin (441) Fractional Quantum Hall Effect at Filling Factor $\nu=2/5$[J]. Chin. Phys. Lett., 2022, 39(1): 017301. DOI: 10.1088/0256-307X/39/1/017301
|