[1] | Wen X G and Zee A 1992 Phys. Rev. Lett. 69 1811 | Neutral superfluid modes and ‘‘magnetic’’ monopoles in multilayered quantum Hall systems
[2] | Moon K, Mori H, Yang K, Girvin S M, MacDonald A H, Zheng L, Yoshioka D, and Zhang S C 1995 Phys. Rev. B 51 5138 | Spontaneous interlayer coherence in double-layer quantum Hall systems: Charged vortices and Kosterlitz-Thouless phase transitions
[3] | Yang K, Moon K, Belkhir L, Mori H, Girvin S M, MacDonald A H, Zheng L, and Yoshioka D 1996 Phys. Rev. B 54 11644 | Spontaneous interlayer coherence in double-layer quantum Hall systems: Symmetry-breaking interactions, in-plane fields, and phase solitons
[4] | Yoshioka D, MacDonald A H, and Girvin S M 1988 Phys. Rev. B 38 3636(R) | Connection between spin-singlet and hierarchical wave functions in the fractional quantum Hall effect
[5] | Yoshioka D, MacDonald A H, and Girvin S M 1989 Phys. Rev. B 39 1932 | Fractional quantum Hall effect in two-layered systems
[6] | He S, Xie X C, Sarma S D, and Zhang F C 1991 Phys. Rev. B 43 9339(R) | Quantum Hall effect in double-quantum-well systems
[7] | He S, Sarma S D, and Xie X C 1993 Phys. Rev. B 47 4394 | Quantized Hall effect and quantum phase transitions in coupled two-layer electron systems
[8] | Halperin B I 1983 Helv. Phys. Acta 56 75 | Säurekatalysierte Dienon-Phenol-Umlagerungen von Allylcyclohexadienonen; ladungsinduzierte und ladungskontrollierte sigmatropische Reaktionen
[9] | Bolotin K I, Ghahari F, Shulman M D, Stormer H L, and Kim P 2009 Nature 462 196 | Observation of the fractional quantum Hall effect in graphene
[10] | Dean C, Young A, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, and Shepard K 2011 Nat. Phys. 7 693 | Multicomponent fractional quantum Hall effect in graphene
[11] | Liu X, Hao Z, Watanabe K, Taniguchi T, Halperin B I, and Kim P 2019 Nat. Phys. 15 893 | Interlayer fractional quantum Hall effect in a coupled graphene double layer
[12] | Li J I A, Shi Q, Zeng Y, Watanabe K, Taniguchi T, Hone J, and Dean C R 2019 Nat. Phys. 15 898 | Pairing states of composite fermions in double-layer graphene
[13] | Goerbig M O and Regnault N 2007 Phys. Rev. B 75 241405(R) | Analysis of a generalization of Halperin’s wave function as an approach towards a fractional quantum Hall effect in graphene sheets
[14] | Cooper N R 2020 Fractional Quantum Hall States of Bosons: Properties and Prospects for Experimental Realization in Fractional Quantum Hall Effects: New Developments edited by Halperin B I and Jain J K (Singapore: World Scientific) chap 10 |
[15] | Ardonne E and Schoutens K 1999 Phys. Rev. Lett. 82 5096 | New Class of Non-Abelian Spin-Singlet Quantum Hall States
[16] | Reijnders J W, van Lankvelt F J M, Schoutens K, and Read N 2002 Phys. Rev. Lett. 89 120401 | Quantum Hall States and Boson Triplet Condensate for Rotating Spin-1 Bosons
[17] | Ardonne E, Kedem R, and Stone M 2005 J. Phys. A 38 617 | Filling the Bose sea: symmetric quantum Hall edge states and affine characters
[18] | Grosfeld E and Schoutens K 2009 Phys. Rev. Lett. 103 076803 | Non-Abelian Anyons: When Ising Meets Fibonacci
[19] | Ardonne E and Regnault N and 2011 Phys. Rev. B 84 205134 | Structure of spinful quantum Hall states: A squeezing perspective
[20] | Davenport S C and Simon S H 2012 Phys. Rev. B 85 075430 | Multiparticle pseudopotentials for multicomponent quantum Hall systems
[21] | Hormozi L, Möller G, and Simon S H 2012 Phys. Rev. Lett. 108 256809 | Fractional Quantum Hall Effect of Lattice Bosons Near Commensurate Flux
[22] | Chen X, Gu Z C, Liu Z X, and Wen X G 2013 Phys. Rev. B 87 155114 | Symmetry protected topological orders and the group cohomology of their symmetry group
[23] | Senthil T and Levin M 2013 Phys. Rev. Lett. 110 046801 | Integer Quantum Hall Effect for Bosons
[24] | Lu Y M and Vishwanath A 2012 Phys. Rev. B 86 125119 | Theory and classification of interacting integer topological phases in two dimensions: A Chern-Simons approach
[25] | Juliá Díaz T G B, Barberán N, and Lewenstein M 2012 Phys. Rev. A 86 021603(R) | Non-Abelian spin-singlet states of two-component Bose gases in artificial gauge fields
[26] | Furukawa S and Ueda M 2012 Phys. Rev. A 86 031604(R) | Quantum Hall states in rapidly rotating two-component Bose gases
[27] | Wu Y H and Jain J K 2013 Phys. Rev. B 87 245123 | Quantum Hall effect of two-component bosons at fractional and integral fillings
[28] | Furukawa S and Ueda M 2013 Phys. Rev. Lett. 111 090401 | Integer Quantum Hall State in Two-Component Bose Gases in a Synthetic Magnetic Field
[29] | Regnault N and Senthil T 2013 Phys. Rev. B 88 161106(R) | Microscopic model for the boson integer quantum Hall effect
[30] | Raventós T G D, Lewenstein M, and Juliá Díaz B 2014 Phys. Rev. B 89 045114 | Quantum Hall phases of two-component bosons
[31] | Furukawa S and Ueda M 2017 Phys. Rev. A 96 053626 | Quantum Hall phase diagram of two-component Bose gases: Intercomponent entanglement and pseudopotentials
[32] | Möller G and Cooper N R 2009 Phys. Rev. Lett. 103 105303 | Composite Fermion Theory for Bosonic Quantum Hall States on Lattices
[33] | Sterdyniak A, Cooper N R, and Regnault N 2015 Phys. Rev. Lett. 115 116802 | Bosonic Integer Quantum Hall Effect in Optical Flux Lattices
[34] | Möller G and Cooper N R 2015 Phys. Rev. Lett. 115 126401 | Fractional Chern Insulators in Harper-Hofstadter Bands with Higher Chern Number
[35] | Zhu W, Gong S S, Sheng D N, Sheng L 2015 Phys. Rev. B 91 245126 | Possible non-Abelian Moore-Read state in double-layer bosonic fractional quantum Hall system
[36] | Liu Z, Vaezi A, Repellin C, and Regnault N 2016 Phys. Rev. B 93 085115 | Phase diagram of bilayer bosons with interlayer couplings
[37] | Wen X G 2016 Natl. Sci. Rev. 3 68 | A theory of 2+1D bosonic topological orders
[38] | Sørensen A S, Demler E, and Lukin M D 2005 Phys. Rev. Lett. 94 086803 | Fractional Quantum Hall States of Atoms in Optical Lattices
[39] | Hafezi M, Sørensen A S, Demler E, and Lukin M D 2007 Phys. Rev. A 76 023613 | Fractional quantum Hall effect in optical lattices
[40] | Palmer R N and Jaksch D 2006 Phys. Rev. Lett. 96 180407 | High-Field Fractional Quantum Hall Effect in Optical Lattices
[41] | Palmer R N, Klein A, and Jaksch D 2008 Phys. Rev. A 78 013609 | Optical lattice quantum Hall effect
[42] | Kapit E and Mueller E 2010 Phys. Rev. Lett. 105 215303 | Exact Parent Hamiltonian for the Quantum Hall States in a Lattice
[43] | Haldane F D M 1988 Phys. Rev. Lett. 61 2015 | Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly"
[44] | Aidelsburger M, Atala M, Lohse M, Barreiro J T, Paredes B, and Bloch I 2013 Phys. Rev. Lett. 111 185301 | Realization of the Hofstadter Hamiltonian with Ultracold Atoms in Optical Lattices
[45] | Miyake H, Siviloglou G A, Kennedy C J, Burton W C, and Ketterle W 2013 Phys. Rev. Lett. 111 185302 | Realizing the Harper Hamiltonian with Laser-Assisted Tunneling in Optical Lattices
[46] | Mancini M, Pagano G, Cappellini G, Livi L, Rider M, Catani J, Sias C, Zoller P, Inguscio M, Dalmonte M, and Fallani L 2015 Science 349 1510 | Observation of chiral edge states with neutral fermions in synthetic Hall ribbons
[47] | Stuhl B K, Lu H I, Aycock L M, Genkina D, and Spielman I B 2015 Science 349 1514 | Visualizing edge states with an atomic Bose gas in the quantum Hall regime
[48] | Jotzu G, Messer M, Desbuquois R, Lebrat M, Uehlinger T, Greif D, and Esslinger T 2014 Nature 515 237 | Experimental realization of the topological Haldane model with ultracold fermions
[49] | Wolf T M R, Lado J L, Blatter G, and Zilberberg O 2019 Phys. Rev. Lett. 123 096802 | Electrically Tunable Flat Bands and Magnetism in Twisted Bilayer Graphene
[50] | Chittari B L, Chen G, Zhang Y, Wang F, and Jung J 2019 Phys. Rev. Lett. 122 016401 | Gate-Tunable Topological Flat Bands in Trilayer Graphene Boron-Nitride Moiré Superlattices
[51] | Chen G, Sharpe A L, Fox E J, Zhang Y H, Wang S, Jiang L, Lyu B, Li H, Watanabe K, Taniguchi T et al. 2020 Nature 579 56 | Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice
[52] | Kang M, Fang S, Ye L, Po H C, Denlinger J, Jozwiak C, Bostwick A, Rotenberg E, Kaxiras E, Checkelsky J G et al. 2020 Nat. Commun. 11 4004 | Topological flat bands in frustrated kagome lattice CoSn
[53] | Sun K, Gu Z, Katsura H, and Sarma S D 2011 Phys. Rev. Lett. 106 236803 | Nearly Flatbands with Nontrivial Topology
[54] | Sheng D N, Gu Z, Sun K, and Sheng L 2011 Nat. Commun. 2 389 | Fractional quantum Hall effect in the absence of Landau levels
[55] | Neupert T, Santos L, Chamon C, and Mudry C 2011 Phys. Rev. Lett. 106 236804 | Fractional Quantum Hall States at Zero Magnetic Field
[56] | Tang E, Mei J W, and Wen X G 2011 Phys. Rev. Lett. 106 236802 | High-Temperature Fractional Quantum Hall States
[57] | Wang Y F, Gu Z C, Gong C D, and Sheng D N 2011 Phys. Rev. Lett. 107 146803 | Fractional Quantum Hall Effect of Hard-Core Bosons in Topological Flat Bands
[58] | Regnault N and Bernevig B A 2011 Phys. Rev. X 1 021014 | Fractional Chern Insulator
[59] | Wen X G and Zee A 1992 Phys. Rev. B 46 2290 | Classification of Abelian quantum Hall states and matrix formulation of topological fluids
[60] | Wen X G and Zee A 1992 Phys. Rev. Lett. 69 953 | Shift and spin vector: New topological quantum numbers for the Hall fluids
[61] | Blok B and Wen X G 1990 Phys. Rev. B 42 8133 | Effective theories of the fractional quantum Hall effect at generic filling fractions
[62] | Blok B and Wen X G 1990 Phys. Rev. B 42 8145 | Effective theories of the fractional quantum Hall effect: Hierarchy construction
[63] | Blok B and Wen X G 1991 Phys. Rev. B 43 8337 | Structure of the microscopic theory of the hierarchical fractional quantum Hall effect
[64] | Liu Z, Bergholtz E J, Fan H, and Läuchli A M 2012 Phys. Rev. Lett. 109 186805 | Fractional Chern Insulators in Topological Flat Bands with Higher Chern Number
[65] | Wang Y F, Yao H, Gong C D, and Sheng D N 2012 Phys. Rev. B 86 201101(R) | Fractional quantum Hall effect in topological flat bands with Chern number two
[66] | Yang S, Gu Z C, Sun K, and Sarma S D 2012 Phys. Rev. B 86 241112(R) | Topological flat band models with arbitrary Chern numbers
[67] | Sterdyniak A, Repellin C, Bernevig B A, and Regnault N 2013 Phys. Rev. B 87 205137 | Series of Abelian and non-Abelian states in fractional Chern insulators
[68] | Wang D, Liu Z, Cao J, and Fan H 2013 Phys. Rev. Lett. 111 186804 | Tunable Band Topology Reflected by Fractional Quantum Hall States in Two-Dimensional Lattices
[69] | Wu Y L, Regnault N, and Bernevig B A 2013 Phys. Rev. Lett. 110 106802 | Bloch Model Wave Functions and Pseudopotentials for All Fractional Chern Insulators
[70] | Wu Y L, Regnault N, and Bernevig B A 2014 Phys. Rev. B 89 155113 | Haldane statistics for fractional Chern insulators with an arbitrary Chern number
[71] | Wu Y H, Jain J K, and Sun K 2015 Phys. Rev. B 91 041119(R) | Fractional topological phases in generalized Hofstadter bands with arbitrary Chern numbers
[72] | Zeng T S, Zhu W, and Sheng D N 2017 Phys. Rev. B 95 125134 | Two-component quantum Hall effects in topological flat bands
[73] | Zeng T S and Sheng D N 2018 Phys. Rev. B 97 035151 | fractional quantum Hall effect in topological flat bands
[74] | Zeng T S, Sheng D N, and Zhu W 2019 Phys. Rev. B 100 075106 | Topological characterization of hierarchical fractional quantum Hall effects in topological flat bands with SU( ) symmetry
[75] | Zeng T S 2021 Phys. Rev. B 103 L201118 | Fractional quantum Hall effect of Bose-Fermi mixtures
[76] | Wang Y F, Yao H, Gu Z C, Gong C D, and Sheng D N 2012 Phys. Rev. Lett. 108 126805 | Non-Abelian Quantum Hall Effect in Topological Flat Bands
[77] | Sheng D N, Balents L, and Wang Z 2003 Phys. Rev. Lett. 91 116802 | Phase Diagram for Quantum Hall Bilayers at
[78] | Sheng D N, Weng Z Y, Sheng L, and Haldane F D M 2006 Phys. Rev. Lett. 97 036808 | Quantum Spin-Hall Effect and Topologically Invariant Chern Numbers
[79] | Niu Q, Thouless D J, and Wu Y S 1985 Phys. Rev. B 31 3372 | Quantized Hall conductance as a topological invariant
[80] | Gong S S, Zhu W, and Sheng D N 2014 Sci. Rep. 4 6317 | Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model
[81] | Wen X G 1995 Adv. Phys. 44 405 | Topological orders and edge excitations in fractional quantum Hall states
[82] | Wen X G 1992 Int. J. Mod. Phys. B 6 1711 | THEORY OF THE EDGE STATES IN FRACTIONAL QUANTUM HALL EFFECTS
[83] | Li H and Haldane F D M 2008 Phys. Rev. Lett. 101 010504 | Entanglement Spectrum as a Generalization of Entanglement Entropy: Identification of Topological Order in Non-Abelian Fractional Quantum Hall Effect States
[84] | Qi X L, Katsura H, and Ludwig A W W 2012 Phys. Rev. Lett. 108 196402 | General Relationship between the Entanglement Spectrum and the Edge State Spectrum of Topological Quantum States
[85] | He Y C, Bhattacharjee S, Moessner R, and Pollmann F 2015 Phys. Rev. Lett. 115 116803 | Bosonic Integer Quantum Hall Effect in an Interacting Lattice Model
[86] | Zeng T S, Sheng D N, and Zhu W 2020 Phys. Rev. B 101 195310 | Quantum Hall effects of exciton condensate in topological flat bands
[87] | Cooper N R, Dalibard J, and Spielman I B 2019 Rev. Mod. Phys. 91 015005 | Topological bands for ultracold atoms