[1] | Marcus R A 1956 J. Chem. Phys. 24 966 | On the Theory of Oxidation‐Reduction Reactions Involving Electron Transfer. I
[2] | May V and Kühn O 2011 Charge and Energy Transfer Dynamics in Molecular Systems (New York: WILEY-VCH Verlag) |
[3] | Weinkauf R, Schanen P, Metsala A, Schlag E W, Bürgle M, and Kessler H 1996 J. Phys. Chem. 100 18567 | Highly Efficient Charge Transfer in Peptide Cations in the Gas Phase: Threshold Effects and Mechanism
[4] | Cederbaum L S and Zobeley J 1999 Chem. Phys. Lett. 307 205 | Ultrafast charge migration by electron correlation
[5] | Kraus P M, Mignolet B, Baykusheva D, Rupenyan A, Horny L, Penka E F, Grassi G, Tolstikhin O I, Schneider J, Jensen F, Madsen L B, Bandrauk A D, Remacle F, and Wörner H J 2015 Science 350 790 | Measurement and laser control of attosecond charge migration in ionized iodoacetylene
[6] | Barth I and Manz J 2006 Angew. Chem. Int. Ed. 45 2962 | Periodic Electron Circulation Induced by Circularly Polarized Laser Pulses: Quantum Model Simulations for Mg Porphyrin
[7] | Jia D, Manz J, Paulus B, Pohl V, Tremblay J C, and Yang Y 2017 Chem. Phys. 482 146 | Quantum control of electronic fluxes during adiabatic attosecond charge migration in degenerate superposition states of benzene
[8] | Li H, Mignolet B, Wachter G, Skruszewicz S, Zherebtsov S, Süßmann F, Kessel A, Trushin S A, Kling N G, Kübel M, Ahn B, Kim D, Ben-Itzhak I, Cocke C L, Fennel T, Tiggesbäumker J, Meiwes-Broer K H, Lemell C, Burgdörfer J, Levine R D, Remacle F, and Kling M F 2015 Phys. Rev. Lett. 114 123004 | Coherent Electronic Wave Packet Motion in Controlled by the Waveform and Polarization of Few-Cycle Laser Fields
[9] | Wörner H J, Arrell C A, Banerji N, Cannizzo A, Chergui M, Das A K, Hamm P, Keller U, Kraus P M, Liberatore E, Lopez-Tarifa P, Lucchini M, Meuwly M, Milne C, Moser J E, Rothlisberger U, Smolentsev G, Teuscher J, van Bokhoven, and Wenger O 2017 Struct. Dyn. 4 061508 | Charge migration and charge transfer in molecular systems
[10] | Bandrauk A D, Chelkowski S, Corkum P B, Manz J, and Yudin G L 2009 J. Phys. B 42 134001 | Attosecond photoionization of a coherent superposition of bound and dissociative molecular states: effect of nuclear motion
[11] | Despré V, Golubev N V, and Kuleff A I 2018 Phys. Rev. Lett. 121 203002 | Charge Migration in Propiolic Acid: A Full Quantum Dynamical Study
[12] | Jia D, Manz J, and Yang Y 2019 J. Phys. Chem. Lett. 10 4273 | De- and Recoherence of Charge Migration in Ionized Iodoacetylene
[13] | Jia D, Manz J, and Yang Y 2019 J. Chem. Phys. 151 244306 | Timing the recoherences of attosecond electronic charge migration by quantum control of femtosecond nuclear dynamics: A case study for HCCI +
[14] | Dudin Y O and Kuzmich A 2012 Science 336 887 | Strongly Interacting Rydberg Excitations of a Cold Atomic Gas
[15] | Hermann-Avigliano C, Teixeira R C, Nguyen T L, Cantat-Moltrecht T, Nogues G, Dotsenko I, Gleyzes S, Raimond J M, Haroche S, and Brune M 2014 Phys. Rev. A 90 040502 | Long coherence times for Rydberg qubits on a superconducting atom chip
[16] | Lampen J, H N H, Li L, Berman P R, and Kuzmich A 2018 Phys. Rev. A 98 033411 | Long-lived coherence between ground and Rydberg levels in a magic-wavelength lattice
[17] | Gallagher T F 1994 Rydberg Atoms (New York: Cambridge University Press) |
[18] | Urban E, Johnson T A, Henage T, Isenhower L, Yavuz D D, Walker T G, and Saffman M 2009 Nat. Phys. 5 110 | Observation of Rydberg blockade between two atoms
[19] | Peyronel T, Firstenberg O, Liang Q Y, Hofferberth S, Gorshkov A V, Pohl T, Lukin M D, and Vuletić V 2012 Nature 488 57 | Quantum nonlinear optics with single photons enabled by strongly interacting atoms
[20] | Tiarks D, Baur S, Schneider K, Dürr S, and Rempe G 2014 Phys. Rev. Lett. 113 053602 | Single-Photon Transistor Using a Förster Resonance
[21] | Moore K R, Anderson S E, and Raithel G 2015 Nat. Commun. 6 6090 | Forbidden atomic transitions driven by an intensity-modulated laser trap
[22] | Vogt T, Viteau M, Zhao J, Chotia A, Comparat D, and Pillet P 2006 Phys. Rev. Lett. 97 083003 | Dipole Blockade at Förster Resonances in High Resolution Laser Excitation of Rydberg States of Cesium Atoms
[23] | Comparat D and Pillet P 2010 J. Opt. Soc. Am. B 27 A208 | Dipole blockade in a cold Rydberg atomic sample [Invited]
[24] | Paredes-Barato D and Adams C S 2014 Phys. Rev. Lett. 112 040501 | All-Optical Quantum Information Processing Using Rydberg Gates
[25] | Sedlacek J A, Schwettmann A, Kübler H, Löw R, Pfau T, and Shaffer J P 2012 Nat. Phys. 8 819 | Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances
[26] | Jing M, Hu Y, Ma J, Zhang H, Zhang L, Xiao L, and Jia S 2020 Nat. Phys. 16 911 | Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy
[27] | Günter G, Schempp H, Robert-de S V M, Gavryusev V, Helmrich S, Hofmann C S, Whitlock S, and Weidemüller M 2013 Science 342 954 | Observing the Dynamics of Dipole-Mediated Energy Transport by Interaction-Enhanced Imaging
[28] | Orioli A P, Signoles A, Wildhagen H, Günter G, Berges J, Whitlock S, and Weidemüller M 2018 Phys. Rev. Lett. 120 063601 | Relaxation of an Isolated Dipolar-Interacting Rydberg Quantum Spin System
[29] | Mizoguchi M, Zhang Y, Kunimi M, Tanaka A, Takeda S, Takei N, Bharti V, Koyasu K, Kishimoto T, Jaksch D, A G A, Kiffner M, Masella G, Pupillo G, Weidemüller M, and Ohmori K 2020 Phys. Rev. Lett. 124 253201 | Ultrafast Creation of Overlapping Rydberg Electrons in an Atomic BEC and Mott-Insulator Lattice
[30] | Sheng J, Chao Y, and Shaffer J P 2016 Phys. Rev. Lett. 117 103201 | Strong Coupling of Rydberg Atoms and Surface Phonon Polaritons on Piezoelectric Superlattices
[31] | Thaicharoen N, Gonçalves L F, and Raithel G 2016 Phys. Rev. Lett. 116 213002 | Atom-Pair Kinetics with Strong Electric-Dipole Interactions
[32] | Takei N, Sommer C, Genes C, Pupillo G, Goto H, Koyasu K, Chiba H, Weidemüller M, and Ohmori K 2016 Nat. Commun. 7 13449 | Direct observation of ultrafast many-body electron dynamics in an ultracold Rydberg gas
[33] | Ding H, Jia D, Manz J, and Yang Y 2017 Mol. Phys. 115 1813 | Reconstruction of the electronic flux during adiabatic attosecond charge migration in HCCI +
[34] | Manz J, Pérez-Torres J F, and Yang Y 2013 Phys. Rev. Lett. 111 153004 | Nuclear Fluxes in Diatomic Molecules Deduced from Pump-Probe Spectra with Spatiotemporal Resolutions down to 5 pm and 200 asec
[35] | Manz J, Pérez-Torres J F, and Yang Y 2014 J. Phys. Chem. A 118 8411 | Vibrating H 2 + ( 2 Σ g + , JM = 00) Ion as a Pulsating Quantum Bubble in the Laboratory Frame
[36] | Jia D, Manz J, and Yang Y 2018 J. Chem. Phys. 148 041101 | Communication: Electronic flux induced by crossing the transition state
[37] | Jia D, Manz J, and Yang Y 2017 J. Mod. Opt. 64 960 | Generation of electronic flux during the femtosecond laser pulse tailored to induce adiabatic attosecond charge migration in
[38] | Liu C, Manz J, Ohmori K, Sommer C, Takei N, Tremblay J C, and Zhang Y 2018 Phys. Rev. Lett. 121 173201 | Attosecond Control of Restoration of Electronic Structure Symmetry