[1] | El-Ganainy R, Makris K G, Khajavikhan M, Musslimani Z H, Rotter S, and Christodoulides D N 2018 Nat. Phys. 14 11 | Non-Hermitian physics and PT symmetry
[2] | Xu Y 2019 Front. Phys. 14 43402 | Topological gapless matters in three-dimensional ultracold atomic gases
[3] | Zhang D W, Zhu Y Q, Zhao Y X, Yan H, and Zhu S L 2019 Adv. Phys. 67 253 | Topological quantum matter with cold atoms
[4] | Ashida Y, Gong Z, and Ueda M 2020 Adv. Phys. 69 249 | Non-Hermitian physics
[5] | Bergholtz E J, Budich J C, and Kunst F K 2021 Rev. Mod. Phys. 93 015005 | Exceptional topology of non-Hermitian systems
[6] | Zhen B, Hsu C W, Igarashi Y, Lu L, Kaminer I, Pick A, Chua S L, Joannopoulos J D, and Soljačić M 2015 Nature 525 354 | Spawning rings of exceptional points out of Dirac cones
[7] | Xu Y, Wang S T, and Duan L M 2017 Phys. Rev. Lett. 118 045701 | Weyl Exceptional Rings in a Three-Dimensional Dissipative Cold Atomic Gas
[8] | Cerjan A, Xiao M, Yuan L, and Fan S 2018 Phys. Rev. B 97 075128 | Effects of non-Hermitian perturbations on Weyl Hamiltonians with arbitrary topological charges
[9] | Zhou H Y, Peng C, Yoon Y, Hsu C W, Nelson K A, Fu L, Joannopoulos J D, Soljačić M, and Zhen B 2018 Science 359 1009 | Observation of bulk Fermi arc and polarization half charge from paired exceptional points
[10] | Carlström J and Bergholtz E J 2018 Phys. Rev. A 98 042114 | Exceptional links and twisted Fermi ribbons in non-Hermitian systems
[11] | Yang Z and Hu J 2019 Phys. Rev. B 99 041202(R) | Topological exceptional surfaces in non-Hermitian systems with parity-time and parity-particle-hole symmetries
[12] | Wang H Q, Ruan J W, and Zhang H J 2019 Phys. Rev. B 99 075130 | Non-Hermitian nodal-line semimetals with an anomalous bulk-boundary correspondence
[13] | Özdemir S K, Rotter S, Nori F, and Yang L 2019 Nat. Mater. 18 783 | Parity–time symmetry and exceptional points in photonics
[14] | Cerjan A, Huang S, Wang M, Chen K P, Chong Y, and Rechtsman M C 2019 Nat. Photon. 13 623 | Experimental realization of a Weyl exceptional ring
[15] | Kawabata K, Bessho T, and Sato M 2019 Phys. Rev. Lett. 123 066405 | Classification of Exceptional Points and Non-Hermitian Topological Semimetals
[16] | Zhang X F, Ding K, Zhou X J, Xu J, and Jin D F 2019 Phys. Rev. Lett. 123 237202 | Experimental Observation of an Exceptional Surface in Synthetic Dimensions with Magnon Polaritons
[17] | Hou J, Li Z, Luo X W, Gu Q, and Zhang C 2020 Phys. Rev. Lett. 124 073603 | Topological Bands and Triply Degenerate Points in Non-Hermitian Hyperbolic Metamaterials
[18] | Yang Z, Chiu C K, Fang C, and Hu J 2020 Phys. Rev. Lett. 124 186402 | Jones Polynomial and Knot Transitions in Hermitian and non-Hermitian Topological Semimetals
[19] | Wang K K, Xiao L, Budich J C, Yi W, and Xue P 2021 Phys. Rev. Lett. 127 026404 | Simulating Exceptional Non-Hermitian Metals with Single-Photon Interferometry
[20] | Kozii V and Fu L 2017 arXiv:1708.05841 [cond-mat.mes-hall] | Non-Hermitian Topological Theory of Finite-Lifetime Quasiparticles: Prediction of Bulk Fermi Arc Due to Exceptional Point
[21] | Zyuzin A A and Zyuzin A Y 2018 Phys. Rev. B 97 041203(R) | Flat band in disorder-driven non-Hermitian Weyl semimetals
[22] | Yoshida T, Peters R, and Kawakami N 2018 Phys. Rev. B 98 035141 | Non-Hermitian perspective of the band structure in heavy-fermion systems
[23] | Zhao P L, Wang A M, and Liu G Z 2018 Phys. Rev. B 98 085150 | Condition for the emergence of a bulk Fermi arc in disordered Dirac-fermion systems
[24] | Yoshida T, Peters R, Kawakami N, and Hatsugai Y 2019 Phys. Rev. B 99 121101(R) | Symmetry-protected exceptional rings in two-dimensional correlated systems with chiral symmetry
[25] | Nagai Y, Qi Y, Isobe H, Kozii V, and Fu L 2020 Phys. Rev. Lett. 125 227204 | DMFT Reveals the Non-Hermitian Topology and Fermi Arcs in Heavy-Fermion Systems
[26] | Okuma N and Sato M 2021 Phys. Rev. Lett. 126 176601 | Non-Hermitian Skin Effects in Hermitian Correlated or Disordered Systems: Quantities Sensitive or Insensitive to Boundary Effects and Pseudo-Quantum-Number
[27] | Tao Y L, Qin T, and Xu Y 2021 arXiv:2111.03348 [cond-mat.str-el] | Exceptional Rings with Bounded Fermi Surfaces in Three-Dimensional Heavy-Fermion Systems Revealed by DMFT
[28] | Chang M C and Niu Q 1995 Phys. Rev. Lett. 75 1348 | Berry Phase, Hyperorbits, and the Hofstadter Spectrum
[29] | Sundaram G and Niu Q 1999 Phys. Rev. B 59 14915 | Wave-packet dynamics in slowly perturbed crystals: Gradient corrections and Berry-phase effects
[30] | Xiao D, Shi J, and Niu Q 2005 Phys. Rev. Lett. 95 137204 | Berry Phase Correction to Electron Density of States in Solids
[31] | Xiao D, Chang M C, and Niu Q 2010 Rev. Mod. Phys. 82 1959 | Berry phase effects on electronic properties
[32] | Gao Y, Yang S A, and Niu Q 2014 Phys. Rev. Lett. 112 166601 | Field Induced Positional Shift of Bloch Electrons and Its Dynamical Implications
[33] | Sodemann I and Fu L 2015 Phys. Rev. Lett. 115 216806 | Quantum Nonlinear Hall Effect Induced by Berry Curvature Dipole in Time-Reversal Invariant Materials
[34] | Silberstein N, Behrends J, Goldstein M, and Ilan R 2020 Phys. Rev. B 102 245147 | Berry connection induced anomalous wave-packet dynamics in non-Hermitian systems
[35] | See the Supplementary Material |
[36] | Blohmann C 2003 Eur. Phys. J. C 30 435 | Free q-deformed relativistic wave equations by representation theory
[37] | Zhu Y Q, Zheng W, Zhu S L, and Palumbo G 2021 Phys. Rev. B 104 205103 | Band topology of pseudo-Hermitian phases through tensor Berry connections and quantum metric
[38] | Mostafazadeh A 2002 J. Math. Phys. 43 205 | Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian
[39] | Zhang K, Yang Z, and Fang C 2020 Phys. Rev. Lett. 125 126402 | Correspondence between Winding Numbers and Skin Modes in Non-Hermitian Systems
[40] | Okuma N, Kawabata K, Shiozaki K, and Sato M 2020 Phys. Rev. Lett. 124 086801 | Topological Origin of Non-Hermitian Skin Effects
[41] | Borgnia D S, Kruchkov A J, and Slager R J 2020 Phys. Rev. Lett. 124 056802 | Non-Hermitian Boundary Modes and Topology
[42] | Yao S and Wang Z 2018 Phys. Rev. Lett. 121 086803 | Edge States and Topological Invariants of Non-Hermitian Systems
[43] | Xiong Y 2018 J. Phys. Commun. 2 035043 | Why does bulk boundary correspondence fail in some non-hermitian topological models
[44] | Mao L, Deng T, and Zhang P 2021 Phys. Rev. B 104 125435 | Boundary condition independence of non-Hermitian Hamiltonian dynamics
[45] | Hafezi M, Demler E A, Lukin M D, and Taylor J M 2011 Nat. Phys. 7 907 | Robust optical delay lines with topological protection
[46] | Yanik M F and Fan S 2004 Phys. Rev. Lett. 92 083901 | Stopping Light All Optically
[47] | Longhi S, Gatti D, and Valle G D 2015 Sci. Rep. 5 13376 | Robust light transport in non-Hermitian photonic lattices