[1] | Dunn B, Kamath H, and Tarascon J M 2011 Science 334 928 | Electrical Energy Storage for the Grid: A Battery of Choices
[2] | Cheng F, Liang J, Tao Z, and Chen J 2011 Adv. Mater. 23 1695 | Functional Materials for Rechargeable Batteries
[3] | Qian J, Henderson W A, Xu W, Bhattacharya P et al. 2015 Nat. Commun. 6 6362 | High rate and stable cycling of lithium metal anode
[4] | Pervez S A, Cambaz M A, Thangadurai V, and Fichtner M 2019 ACS Appl. Mater. & Interfaces 11 22029 | Interface in Solid-State Lithium Battery: Challenges, Progress, and Outlook
[5] | Famprikis T, Canepa P, Dawson J A, Islam M S et al. 2019 Nat. Mater. 18 1278 | Fundamentals of inorganic solid-state electrolytes for batteries
[6] | Zheng F, Kotobuki M, Song S, Lai M O et al. 2018 J. Power Sources 389 198 | Review on solid electrolytes for all-solid-state lithium-ion batteries
[7] | Wang C, Ping W, Bai Q, Cui H et al. 2020 Science 368 521 | A general method to synthesize and sinter bulk ceramics in seconds
[8] | Li S, Zhang S Q, Shen L, Liu Q et al. 2020 Adv. Sci. 7 1903088 | Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries
[9] | Hu S, Chen W, Zhou J, Yin F et al. 2014 J. Mater. Chem. A 2 7862 | Preparation of carbon coated MoS2 flower-like nanostructure with self-assembled nanosheets as high-performance lithium-ion battery anodes
[10] | Hu S, Yin F, Uchaker E, Zhang M et al. 2014 J. Phys. Chem. C 118 24890 | Facile and Green Preparation for the Formation of MoO 2 -GO Composites as Anode Material for Lithium-Ion Batteries
[11] | Hu S, Chen W, Uchaker E, Zhou J et al. 2015 Chem. - Eur. J. 21 18248 | Mesoporous Carbon Nanofibers Embedded with MoS 2 Nanocrystals for Extraordinary Li-Ion Storage
[12] | Tang Y, Zhang L, Chen J, Sun H et al. 2021 Energy & Environ. Sci. 14 602 | Electro-chemo-mechanics of lithium in solid state lithium metal batteries
[13] | Zhong Y, Xie Y, Hwang S, Wang Q et al. 2020 Angew. Chem. Int. Ed. 59 14003 | A Highly Efficient All‐Solid‐State Lithium/Electrolyte Interface Induced by an Energetic Reaction
[14] | Golozar M, Paolella A, Demers H, Savoie S et al. 2020 Sci. Rep. 10 18410 | Direct observation of lithium metal dendrites with ceramic solid electrolyte
[15] | Zhang X, Wang S, Xue C, Xin C et al. 2019 Adv. Mater. 31 1806082 | Self‐Suppression of Lithium Dendrite in All‐Solid‐State Lithium Metal Batteries with Poly(vinylidene difluoride)‐Based Solid Electrolytes
[16] | Masias A, Felten N, Garcia-Mendez R, Wolfenstine J et al. 2019 J. Mater. Sci. 54 2585 | Elastic, plastic, and creep mechanical properties of lithium metal
[17] | Manalastas J W, Rikarte J, Chater R J, Brugge R et al. 2019 J. Power Sources 412 287 | Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy
[18] | Kawahara K, Ishikawa R, Nakayama K, Higashi T et al. 2019 J. Power Sources 441 227187 | Fast Li-ion conduction at grain boundaries in (La,Li)NbO3 polycrystals
[19] | Gao K, He M, Li Y, Zhang Y et al. 2019 J. Alloys Compd. 791 923 | Preparation of high-density garnet thin sheet electrolytes for all-solid-state Li-Metal batteries by tape-casting technique
[20] | Shen F, Dixit M B, Xiao X, and Hatzell K B 2018 ACS Energy Lett. 3 1056 | Effect of Pore Connectivity on Li Dendrite Propagation within LLZO Electrolytes Observed with Synchrotron X-ray Tomography
[21] | Han F, Zhu Y, He X, Mo Y et al. 2016 Adv. Energy Mater. 6 1501590 | Electrochemical Stability of Li 10 GeP 2 S 12 and Li 7 La 3 Zr 2 O 12 Solid Electrolytes
[22] | Cheng E J, Sharafi A, and Sakamoto J 2017 Electrochim. Acta 223 85 | Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte
[23] | Kim S, Jung C, Kim H, Thomas-Alyea K E et al. 2020 Adv. Energy Mater. 10 1903993 | The Role of Interlayer Chemistry in Li‐Metal Growth through a Garnet‐Type Solid Electrolyte
[24] | Valle J M and Sakamoto J 2020 Solid State Ionics 345 115170 | The effect of lanthanoid defects on anionic solvation of Li in Li6.5La2+xZr1.5Ta0.5O12 from x = 0 to x = 1.2 garnet
[25] | Matios E, Wang H, Wang C, Hu X et al. 2019 ACS Appl. Mater. & Interfaces 11 5064 | Graphene Regulated Ceramic Electrolyte for Solid-State Sodium Metal Battery with Superior Electrochemical Stability
[26] | Zekoll S, Marriner-Edwards C, Hekselman A O, Kasemchainan J et al. 2018 Energy & Environ. Sci. 11 185 | Hybrid electrolytes with 3D bicontinuous ordered ceramic and polymer microchannels for all-solid-state batteries
[27] | Han G, Kinzer B, Garcia-Mendez R, Choe H et al. 2020 J. Eur. Ceram. Soc. 40 1999 | Correlating the effect of dopant type (Al, Ga, Ta) on the mechanical and electrical properties of hot-pressed Li-garnet electrolyte
[28] | Hong Y S, Li N, Chen H, Wang P et al. 2018 Energy Storage Mater. 11 118 | In operando observation of chemical and mechanical stability of Li and Na dendrites under quasi-zero electrochemical field
[29] | Cho Y H, Wolfenstine J, Rangasamy E, Kim H et al. 2012 J. Mater. Sci. 47 5970 | Mechanical properties of the solid Li-ion conducting electrolyte: Li0.33La0.57TiO3
[30] | Xu R, Yang Y, Yin F, Liu P et al. 2019 J. Mech. Phys. Solids 129 160 | Heterogeneous damage in Li-ion batteries: Experimental analysis and theoretical modeling
[31] | De Vasconcelos L, Sharma N, Xu R, and Zhao K 2019 Exp. Mech. 59 337 | In-Situ Nanoindentation Measurement of Local Mechanical Behavior of a Li-Ion Battery Cathode in Liquid Electrolyte
[32] | Ni J E, Case E D, Sakamoto J S, Rangasamy E et al. 2012 J. Mater. Sci. 47 7978 | Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet
[33] | Yu S, Schmidt R D, Garcia-Mendez R, Herbert E et al. 2016 Chem. Mater. 28 197 | Elastic Properties of the Solid Electrolyte Li 7 La 3 Zr 2 O 12 (LLZO)
[34] | Sharafi A, Haslam C G, Kerns R D, Wolfenstine J et al. 2017 J. Mater. Chem. A 5 21491 | Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li 7 La 3 Zr 2 O 12 solid-state electrolyte
[35] | De Vasconcelos L S, Xu R, Li J, and Zhao K 2016 Extreme Mech. Lett. 9 495 | Grid indentation analysis of mechanical properties of composite electrodes in Li-ion batteries
[36] | Xu R, Sun H, de Vasconcelos L S, and Zhao K 2017 J. Electrochem. Soc. 164 A3333 | Mechanical and Structural Degradation of LiNi x Mn y Co z O 2 Cathode in Li-Ion Batteries: An Experimental Study
[37] | Kim Y, Jo H, Allen J L, Choe H et al. 2016 J. Am. Ceram. Soc. 99 1367 | The Effect of Relative Density on the Mechanical Properties of Hot‐Pressed Cubic Li 7 La 3 Zr 2 O 12
[38] | Wolfenstine J, Allen J L, Sakamoto J, Siegel D J et al. 2018 Ionics 24 1271 | Mechanical behavior of Li-ion-conducting crystalline oxide-based solid electrolytes: a brief review
[39] | Schell K G, Lemke F, Bucharsky E C, Hintennach A et al. 2017 J. Mater. Sci. 52 2232 | Microstructure and mechanical properties of Li0.33La0.567TiO3
[40] | Li H Y, Huang B, Huang Z, and Wang C A 2019 Ceram. Int. 45 18115 | Enhanced mechanical strength and ionic conductivity of LLZO solid electrolytes by oscillatory pressure sintering