[1] | Snyder G J and Toberer E S 2008 Nat. Mater. 7 105 | Complex thermoelectric materials
[2] | Biswas K, He J, Blum I D, Wu C I, Hogan T P, Seidman D N, Dravid V P, and Kanatzidis M G 2012 Nature 489 414 | High-performance bulk thermoelectrics with all-scale hierarchical architectures
[3] | Zhao L D, Lo S H, Zhang Y, Sun H, Tan G, Uher C, Wolverton C, Dravid V P, and Kanatzidis M G 2014 Nature 508 373 | Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals
[4] | Zhou K, Zhang T, Liu B, and Yao Y J 2020 Chin. Phys. Lett. 37 017102 | Electronic Structures and Thermoelectric Properties of ZnSb Doped with Cd and In from First Principles Calculations
[5] | Wang S F, Zhang Z G, Wang B T, Zhang J R, and Wang F W 2021 Chin. Phys. Lett. 38 046301 | Zintl Phase BaAgSb: Low Thermal Conductivity and High Performance Thermoelectric Material in Ab Initio Calculation
[6] | Yan S, Wang Y, Gao Z, Long Y, and Ren J 2021 Chin. Phys. Lett. 38 027301 | Directional Design of Materials Based on Multi-Objective Optimization: A Case Study of Two-Dimensional Thermoelectric SnSe
[7] | Zhu G P, Zhao C W, Wang X W, and Wang J 2021 Chin. Phys. Lett. 38 024401 | Tuning Thermal Conductivity in Si Nanowires with Patterned Structures
[8] | Zhou L Y, Zheng Q, Bao L H, and Liang W J 2020 Chin. Phys. Lett. 37 017301 | Bipolar Thermoelectrical Transport of SnSe Nanoplate in Low Temperature *
[9] | Gao L, Liu Q, Yang J, Wu Y, Liu Z, Qin S, Ye X, Jin S, Li G, Zhao H, Long Y 2020 Chin. Phys. Lett. 37 066202 | High-Pressure Synthesis and Thermal Transport Properties of Polycrystalline BAs x
[10] | Qin B C, Wang D Y, Liu X X, Qin Y X, Dong J F, Luo J F, Li J W, Liu W, Tan G J, Tang X, Li J, He J, and Zhao L 2021 Science 373 556 | Power generation and thermoelectric cooling enabled by momentum and energy multiband alignments
[11] | Feng B, Li G Q, Hu X M, Liu P H, Li R S, Zhang Y L, Li Y W, He Z, and Fan X A 2020 Chin. Phys. Lett. 37 037201 | Improvement of Thermoelectric Performance in BiCuSeO Oxide by Ho Doping and Band Modulation
[12] | He W, Qin B, and Zhao L D 2020 Chin. Phys. Lett. 37 087104 | Predicting the Potential Performance in P-Type SnS Crystals via Utilizing the Weighted Mobility and Quality Factor
[13] | Ma Z, Xu T, Li W, Cheng Y, Li J, Zhang D, Jiang Q, Luo Y, and Yang J 2021 Adv. Funct. Mater. 31 2103197 | High Entropy Semiconductor AgMnGeSbTe 4 with Desirable Thermoelectric Performance
[14] | Luo Y, Hao S, Cai S, Slade T J, Luo Z Z, Dravid V P, Wolverton C, Yan Q, and Kanatzidis M G 2020 J. Am. Chem. Soc. 142 15187 | High Thermoelectric Performance in the New Cubic Semiconductor AgSnSbSe 3 by High-Entropy Engineering
[15] | Cai S, Hao S, Luo Y, Su X, Luo Z Z, Hu X, Wolverton C, Dravid V P, and Kanatzidis M G 2020 Chem. Mater. 32 3561 | Ultralow Thermal Conductivity and Thermoelectric Properties of Rb 2 Bi 8 Se 13
[16] | Luo Y, Cai S, Hao S, Pielnhofer F, Hadar I, Luo Z Z, Xu J, Wolverton C, Dravid V P, Pfitzner A, Yan Q, and Kanatzidis M G 2020 Joule 4 159 | High-Performance Thermoelectrics from Cellular Nanostructured Sb2Si2Te6
[17] | Bowers R, Ure R W, Bauerle J E, and Cornish A J 1959 J. Appl. Phys. 30 930 | InAs and InSb as Thermoelectric Materials
[18] | Yamaguchi S, Matsumoto T, Yamazaki J, Kaiwa N, and Yamamoto A 2005 Appl. Phys. Lett. 87 201902 | Thermoelectric properties and figure of merit of a Te-doped InSb bulk single crystal
[19] | Su X L, Tang X F, and Han L 2010 Acta Phys. Sin. 59 2860 (in Chinese) | Effects of melt spinning process on microstructure and thermoelectric properties of n-type InSb compounds
[20] | Zhang Q, Xiong Z, Jiang J, Li W, Xu G, Bai S, Cui P, and Chen L 2011 J. Mater. Chem. 21 12398 | Enhanced thermoelectric performance in In1−xGaxSb originating from the scattering of point defects and nanoinclusion
[21] | Mao J, Niedziela J L, Wang Y, Xia Y, Ge B, Liu Z, Zhou J, Ren Z, Liu W, Chan M K Y, Chen G, Delaire O, Zhang Q, and Ren Z 2018 Nano Energy 48 189 | Self-compensation induced vacancies for significant phonon scattering in InSb
[22] | Cheng Y, Yang J, Jiang Q, He D, He J, Luo Y, Zhang D, Zhou Z, Ren Y, and Xin J 2017 J. Mater. Chem. A 5 5163 | New insight into InSb-based thermoelectric materials: from a divorced eutectic design to a remarkably high thermoelectric performance
[23] | Xin J, Jiang Q, Wen Y, Li S, Zhang J, Basit A, Shu L, Li X, and Yang J 2018 J. Mater. Chem. A 6 17049 | An in situ eutectic remelting and oxide replacement reaction for superior thermoelectric performance of InSb
[24] | Luo Y, Yang J, Jiang Q, Li W, Zhang D, Zhou Z, Cheng Y, Ren Y, and He X 2016 Adv. Energy Mater. 6 1600007 | Crossref OpenURL Resolver
[25] | Zhao L D, Lo S H, He J, Li H, Biswas K, Androulakis J, Wu C I, Hogan T P, Chung D Y, Dravid V P, and Kanatzidis M G 2011 J. Am. Chem. Soc. 133 20476 | High Performance Thermoelectrics from Earth-Abundant Materials: Enhanced Figure of Merit in PbS by Second Phase Nanostructures
[26] | Tan G, Stoumpos C C, Wang S, Bailey T P, Zhao L D, Uher C, and Kanatzidis M G 2017 Adv. Energy Mater. 7 1700099 | Subtle Roles of Sb and S in Regulating the Thermoelectric Properties of N‐Type PbTe to High Performance
[27] | Suwardi A, Bash D, Ng H K, Gomez J R, Repaka D V M, Kumar P, and Hippalgaonkar K 2019 J. Mater. Chem. A 7 23762 | Inertial effective mass as an effective descriptor for thermoelectrics via data-driven evaluation
[28] | Bouarissa N and Aourag H 1999 Infrared Phys. & Technol. 40 343 | Effective masses of electrons and heavy holes in InAs, InSb, GaSb, GaAs and some of their ternary compounds
[29] | Hee K J, Jae K M, Oh S, Rhyee J S, Park S D, and Ahn D 2015 Dalton Trans. 44 3185 | Thermoelectric properties and chlorine doping effect of In 4 Pb 0.01 Sn 0.03 Se 2.9 Cl x polycrystalline compounds