[1] | Burch K S, Mandrus D, and Park J G 2018 Nature 563 47 | Magnetism in two-dimensional van der Waals materials
[2] | Huang B et al. 2017 Nature 546 270 | Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit
[3] | Gong C et al. 2017 Nature 546 265 | Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals
[4] | Deng Y et al. 2018 Nature 563 94 | Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2
[5] | Zhong D et al. 2017 Sci. Adv. 3 e1603113 | Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics
[6] | Huang B et al. 2018 Nat. Nanotechnol. 13 544 | Electrical control of 2D magnetism in bilayer CrI3
[7] | Jiang S, Shan J, and Mak K F 2018 Nat. Mater. 17 406 | Electric-field switching of two-dimensional van der Waals magnets
[8] | Jiang S, Li L, Wang Z, Mak K F, and Shan J 2018 Nat. Nanotechnol. 13 549 | Controlling magnetism in 2D CrI3 by electrostatic doping
[9] | Chen W, Sun Z, Wang Z, Gu L, Xu X, Wu S, and Gao C 2019 Science 366 983 | Direct observation of van der Waals stacking–dependent interlayer magnetism
[10] | Li T et al. 2019 Nat. Mater. 18 1303 | Pressure-controlled interlayer magnetism in atomically thin CrI3
[11] | Song T et al. 2019 Nat. Mater. 18 1298 | Switching 2D magnetic states via pressure tuning of layer stacking
[12] | Sun Z et al. 2019 Nature 572 497 | Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3
[13] | Liu L, Yang K, Wang G, and Wu H 2020 J. Mater. Chem. C 8 14782 | Two-dimensional ferromagnetic semiconductor VBr 3 with tunable anisotropy
[14] | Guo Y, Liu N, Zhao Y, Jiang X, Zhou S, and Zhao J 2020 Chin. Phys. Lett. 37 107506 | Enhanced Ferromagnetism of CrI 3 Bilayer by Self-Intercalation
[15] | Mak K F, Shan J, and Ralph D C 2019 Nat. Rev. Phys. 1 646 | Probing and controlling magnetic states in 2D layered magnetic materials
[16] | Gibertini M, Koperski M, Morpurgo A F, and Novoselov K S 2019 Nat. Nanotechnol. 14 408 | Magnetic 2D materials and heterostructures
[17] | Gong C and Zhang X 2019 Science 363 eaav4450 | Two-dimensional magnetic crystals and emergent heterostructure devices
[18] | Zhang W, Wong P K J, Zhu R, and Wee A T S 2019 InfoMat 1 479 | Van der Waals magnets: Wonder building blocks for two‐dimensional spintronics?
[19] | Huang B, McGuire M A, May A F, Xiao D, Jarillo-Herrero P, and Xu X 2020 Nat. Mater. 19 1276 | Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures
[20] | Ningrum V P et al. 2020 Research 2020 1768918 | Recent Advances in Two-Dimensional Magnets: Physics and Devices towards Spintronic Applications
[21] | Yang S, Zhang T, and Jiang C 2021 Adv. Sci. 8 2002488 | van der Waals Magnets: Material Family, Detection and Modulation of Magnetism, and Perspective in Spintronics
[22] | Tian S, Zhang J F, Li C, Ying T, Li S, Zhang X, Liu K, and Lei H 2019 J. Am. Chem. Soc. 141 5326 | Ferromagnetic van der Waals Crystal VI 3
[23] | Kong T, Stolze K, Timmons E I, Tao J, Ni D R, Guo S, Yang Z, Prozorov R, and Cava R J 2019 Adv. Mater. 31 1808074 | VI 3 —a New Layered Ferromagnetic Semiconductor
[24] | Son S et al. 2019 Phys. Rev. B 99 041402 | Bulk properties of the van der Waals hard ferromagnet
[25] | Doležal P et al. 2019 Phys. Rev. Mater. 3 121401 | Crystal structures and phase transitions of the van der Waals ferromagnet
[26] | Marchandier T, Dubouis N, Fauth F, Avdeev M, Grimaud A, Tarascon J M, and Rousse G 2021 Phys. Rev. B 104 014105 | Crystallographic and magnetic structures of the and van der Waals compounds
[27] | Gati E, Inagaki Y, Kong T, Cava R J, Furukawa Y, Canfield P C, and Bud'ko S L 2019 Phys. Rev. B 100 094408 | Multiple ferromagnetic transitions and structural distortion in the van der Waals ferromagnet at ambient and finite pressures
[28] | Yan J et al. 2019 Phys. Rev. B 100 094402 | Anisotropic magnetic entropy change in the hard ferromagnetic semiconductor
[29] | Koriki A et al. 2021 Phys. Rev. B 103 174401 | Magnetic anisotropy in the van der Waals ferromagnet
[30] | Liu Y, Abeykoon M, and Petrovic C 2020 Phys. Rev. Res. 2 013013 | Critical behavior and magnetocaloric effect in
[31] | Valenta J et al. 2021 Phys. Rev. B 103 054424 | Pressure-induced large increase of Curie temperature of the van der Waals ferromagnet
[32] | Yang K, Fan F, Wang H, Khomskii D I, and Wu H 2020 Phys. Rev. B 101 100402(R) | : A two-dimensional Ising ferromagnet
[33] | Zhao G D, Liu X, Hu T, Jia F, Cui Y, Wu W, Whangbo M H, and Ren W 2021 Phys. Rev. B 103 014438 | Difference in magnetic anisotropy of the ferromagnetic monolayers and
[34] | Sandratskii L M and Carva K 2021 Phys. Rev. B 103 214451 | Interplay of spin magnetism, orbital magnetism, and atomic structure in layered van der Waals ferromagnet
[35] | Zhou Z, Pandey S K, and Feng J 2021 Phys. Rev. B 103 035137 | Dynamical correlation enhanced orbital magnetization in
[36] | McGuire M A, Dixit H, Cooper V R, and Sales B C 2015 Chem. Mater. 27 612 | Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI 3
[37] | Chen L, Chung J H, Gao B, Chen T, Stone M B, Kolesnikov A I, Huang Q, and Dai P 2018 Phys. Rev. X 8 041028 | Topological Spin Excitations in Honeycomb Ferromagnet
[38] | Huang C, Wu F, Yu S, Jena P, and Kan E 2020 Phys. Chem. Chem. Phys. 22 512 | Discovery of twin orbital-order phases in ferromagnetic semiconducting VI 3 monolayer
[39] | Broadway D A et al. 2020 Adv. Mater. 32 2003314 | Imaging Domain Reversal in an Ultrathin Van der Waals Ferromagnet
[40] | Lyu B et al. 2020 Nano Lett. 20 6024 | Probing the Ferromagnetism and Spin Wave Gap in VI 3 by Helicity-Resolved Raman Spectroscopy