[1] | Leidenfrost J G 1966 Int. J. Heat Mass Transfer 9 1153 | On the fixation of water in diverse fire
[2] | Biance A L, Clanet C, and Quéré D 2003 Phys. Fluids 15 1632 | Leidenfrost drops
[3] | Gottfried B, Lee C, and Bell K 1966 Int. J. Heat Mass Transfer 9 1167 | The leidenfrost phenomenon: film boiling of liquid droplets on a flat plate
[4] | Temple-Pediani R W 1969 Proc. Inst. Mech. Eng. 184 677 | Fuel Drop Vaporization under Pressure on a Hot Surface
[5] | Bernardin J D and Mudawar I 1999 J. Heat Transfer 121 894 | The Leidenfrost Point: Experimental Study and Assessment of Existing Models
[6] | Gottfried B S and Bell K J 1966 Ind. Eng. Chem. Fundamen. 5 561 | Film Boiling of Spheroidal Droplets. Leidenfrost Phenomenon
[7] | Zhang S and Gogos G 1991 J. Fluid Mech. 222 543 | Film evaporation of a spherical droplet over a hot surface: fluid mechanics and heat/mass transfer analysis
[8] | Quéré D 2013 Annu. Rev. Fluid Mech. 45 197 | Leidenfrost Dynamics
[9] | Van Limbeek M A J, Schaarsberg M H K, Sobac B, Rednikov A, Sun C, Colinet P, and Lohse D 2017 J. Fluid Mech. 827 614 | Leidenfrost drops cooling surfaces: theory and interferometric measurement
[10] | Raudensky M and Horsky J 2005 Ironmak. Steelmak. 32 159 | Secondary cooling in continuous casting and Leidenfrost temperature effects
[11] | Jia Z H, Chen M Y, and Zhu H T 2017 Appl. Phys. Lett. 110 091603 | Reversible self-propelled Leidenfrost droplets on ratchet surfaces
[12] | Lagubeau G, Le M M, Clanet C, and Quéré D 2011 Nat. Phys. 7 395 | Leidenfrost on a ratchet
[13] | Linke H, Alemán B J, Melling L D, Taormina M J, Francis M J, Dow-Hygelund C C, Narayanan V, Taylor R P, and Stout A 2006 Phys. Rev. Lett. 96 154502 | Self-Propelled Leidenfrost Droplets
[14] | Li J, Hou Y, Liu Y, Hao C, Li M, Chaudhury M K, Yao S, and Wang Z 2016 Nat. Phys. 12 606 | Directional transport of high-temperature Janus droplets mediated by structural topography
[15] | Vakarelski I U, Berry J D, Chan D Y, and Thoroddsen S T 2016 Phys. Rev. Lett. 117 114503 | Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids
[16] | Vakarelski I U, Chan D Y, and Thoroddsen S T 2014 Soft Matter 10 5662 | Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water
[17] | Sajadi S M, Irajizad P, Kashyap V, Farokhnia N, and Ghasemi H 2017 Appl. Phys. Lett. 111 021605 | Surfaces for high heat dissipation with no Leidenfrost limit
[18] | Kim H, DeWitt G, McKrell T, Buongiorno J, and Hu L W 2009 Int. J. Multiphase Flow 35 427 | On the quenching of steel and zircaloy spheres in water-based nanofluids with alumina, silica and diamond nanoparticles
[19] | Kim H, Truong B, Buongiorno J, and Hu L W 2011 Appl. Phys. Lett. 98 083121 | On the effect of surface roughness height, wettability, and nanoporosity on Leidenfrost phenomena
[20] | Kwon H M, Bird J C, and Varanasi K K 2013 Appl. Phys. Lett. 103 201601 | Increasing Leidenfrost point using micro-nano hierarchical surface structures
[21] | Tran T, Staat H J J, Susarrey-Arce A, Foertsch T C, Van Houselt A, Gardeniers H J G E, Prosperetti A, Lohse D, and Sun C 2013 Soft Matter 9 3272 | Droplet impact on superheated micro-structured surfaces
[22] | Del C D A, Marin A G, Romer G R, Pathiraj B, Lohse D, and Huis A J 2012 Langmuir 28 15106 | Leidenfrost Point Reduction on Micropatterned Metallic Surfaces
[23] | Shahriari A, Wurz J, and Bahadur V 2014 Langmuir 30 12074 | Heat Transfer Enhancement Accompanying Leidenfrost State Suppression at Ultrahigh Temperatures
[24] | Clavijo C E, Crockett J, and Maynes D 2017 Int. J. Heat Mass Transfer 108 1714 | Hydrodynamics of droplet impingement on hot surfaces of varying wettability
[25] | Vakarelski I U, Patankar N A, Marston J O, Chan D Y, and Thoroddsen S T 2012 Nature 489 274 | Stabilization of Leidenfrost vapour layer by textured superhydrophobic surfaces
[26] | Méndez-Vilas A, Jódar-Reyes A B, and González-Martín M L 2009 Small 5 1366 | Ultrasmall Liquid Droplets on Solid Surfaces: Production, Imaging, and Relevance for Current Wetting Research
[27] | Tabe H, Kobayashi K, Yaguchi H, Fujii H, and Watanabe M 2020 Int. J. Thermal Sci. 150 106203 | Levitation mechanism of impacting nanodroplet on heated wall
[28] | Horne J E, Lavrik N V, Terrones H, and Fuentes-Cabrera M 2015 Sci. Rep. 5 11769 | Extrapolating Dynamic Leidenfrost Principles to Metallic Nanodroplets on Asymmetrically Textured Surfaces
[29] | Tabe H, Kobayashi K, Yaguchi H, Fujii H, and Watanabe M 2019 Heat Mass Transfer 55 993 | Influence of liquid–solid intermolecular force on levitation of impacting nanodroplet
[30] | Rodrigues J and Desai S 2019 Nanoscale 11 12139 | The nanoscale Leidenfrost effect
[31] | Green M S 1954 J. Chem. Phys. 22 398 | Markoff Random Processes and the Statistical Mechanics of Time‐Dependent Phenomena. II. Irreversible Processes in Fluids
[32] | Kubo R 1957 J. Phys. Soc. Jpn. 12 570 | Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems
[33] | Dong L, Wu X S, Hu Y, Xu X F, and Bao H 2021 Chin. Phys. Lett. 38 027202 | Suppressed Thermal Conductivity in Polycrystalline Gold Nanofilm: The Effect of Grain Boundary and Substrate
[34] | Yu X X, Ma D K, Deng C C, Wan X, An M, Meng H, Li X B, Huang X M, and Yang N 2021 Chin. Phys. Lett. 38 014401 | How Does van der Waals Confinement Enhance Phonon Transport?*
[35] | Zhu G P, Zhao C W, Wang X W, and Wang J 2021 Chin. Phys. Lett. 38 024401 | Tuning Thermal Conductivity in Si Nanowires with Patterned Structures
[36] | Plimpton S 1995 J. Comput. Phys. 117 1 | Fast Parallel Algorithms for Short-Range Molecular Dynamics
[37] | Cui L, Feng Y, Tang J, Tan P, and Zhang X 2016 Int. J. Thermal Sci. 99 64 | Heat conduction in coaxial nanocables of Au nanowire core and carbon nanotube shell: A molecular dynamics simulation
[38] | Jorgensen W L and Madura J D 1985 Mol. Phys. 56 1381 | Temperature and size dependence for Monte Carlo simulations of TIP4P water
[39] | Mahoney M W and Jorgensen W L 2000 J. Chem. Phys. 112 8910 | A five-site model for liquid water and the reproduction of the density anomaly by rigid, nonpolarizable potential functions
[40] | An M, Demir B, Wan X, Meng H, Yang N, and Walsh T R 2019 Adv. Theory Simul. 2 1800153 | Predictions of Thermo‐Mechanical Properties of Cross‐Linked Polyacrylamide Hydrogels Using Molecular Simulations
[41] | Yenigun O and Barisik M 2019 Int. J. Heat Mass Transfer 134 634 | Effect of nano-film thickness on thermal resistance at water/silicon interface
[42] | Swope W C, Andersen H C, Berens P H, and Wilson K R 1982 J. Chem. Phys. 76 637 | A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters
[43] | Ryckaert J P and Bellemans A 1978 Faraday Discuss. Chem. Soc. 66 95 | Molecular dynamics of liquid alkanes
[44] | Mao Y and Zhang Y 2014 Appl. Therm. Eng. 62 607 | Molecular dynamics simulation on rapid boiling of water on a hot copper plate
[45] | Alexeev D, Chen J, Walther J H, Giapis K P, Angelikopoulos P, and Koumoutsakos P 2015 Nano Lett. 15 5744 | Kapitza Resistance between Few-Layer Graphene and Water: Liquid Layering Effects
[46] | Zong D, Yang Z, and Duan Y 2017 Appl. Therm. Eng. 122 71 | Wettability of a nano-droplet in an electric field: A molecular dynamics study
[47] | Hua-Yi H, Lin M C, Bridget P, Lin C R, Patankar N A, and Kumar M Y 2017 PLOS ONE 12 e0187175 | A numerical investigation of the effect of surface wettability on the boiling curve
[48] | Gong G M, Wu J T, Zhao Y, Liu J G, Jin X, and Jiang L 2014 Soft Matter 10 549 | A novel fluorinated polyimide surface with petal effect produced by electrospinning