[1] | Kimble H J 2008 Nature 453 1023 | The quantum internet
[2] | Sangouard N, Simon C, de Riedmatten H, and Gisin N 2011 Rev. Mod. Phys. 83 33 | Quantum repeaters based on atomic ensembles and linear optics
[3] | Northup T E and Blatt R 2014 Nat. Photon. 8 356 | Quantum information transfer using photons
[4] | Wehner1 S, Elkouss D and Hanson R 2018 Science 362 eaam9288 | Quantum internet: A vision for the road ahead
[5] | Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209 | Colloquium : Quantum networks with trapped ions
[6] | Ritter S et al. 2012 Nature 484 195 | An elementary quantum network of single atoms in optical cavities
[7] | Reiserer A and Rempe G 2015 Rev. Mod. Phys. 87 1379 | Cavity-based quantum networks with single atoms and optical photons
[8] | Gao W B, Fallahi P, Togan E, Miguel-Sanchez J, and Imamoglu A 2012 Nature 491 426 | Observation of entanglement between a quantum dot spin and a single photon
[9] | De Greve K et al. 2012 Nature 491 421 | Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength
[10] | Bernien H et al. 2013 Nature 497 86 | Heralded entanglement between solid-state qubits separated by three metres
[11] | Koehl W F, Buckley B B, Heremans F J, Calusine G, and Awschalom D D 2011 Nature 479 84 | Room temperature coherent control of defect spin qubits in silicon carbide
[12] | Sipahigil A et al. 2016 Science 354 847 | An integrated diamond nanophotonics platform for quantum-optical networks
[13] | Nguyen C T et al. 2019 Phys. Rev. Lett. 123 183602 | Quantum Network Nodes Based on Diamond Qubits with an Efficient Nanophotonic Interface
[14] | Awschalom D D, Hanson R, Wrachtrup J, and Zhou B B 2018 Nat. Photon. 12 516 | Quantum technologies with optically interfaced solid-state spins
[15] | Kolesov R et al. 2012 Nat. Commun. 3 1029 | Optical detection of a single rare-earth ion in a crystal
[16] | Utikal T et al. 2014 Nat. Commun. 5 3627 | Spectroscopic detection and state preparation of a single praseodymium ion in a crystal
[17] | Zhong T et al. 2018 Phys. Rev. Lett. 121 183603 | Optically Addressing Single Rare-Earth Ions in a Nanophotonic Cavity
[18] | Dibos A M, Raha M, Phenicie C M, and Thompson J D 2018 Phys. Rev. Lett. 120 243601 | Atomic Source of Single Photons in the Telecom Band
[19] | Kindem J M et al. 2020 Nature 580 201 | Control and single-shot readout of an ion embedded in a nanophotonic cavity
[20] | Berry M V 1984 Proc. R. Soc. A 392 45 | Quantal Phase Factors Accompanying Adiabatic Changes
[21] | Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593 | Phase change during a cyclic quantum evolution
[22] | Zhu S L and Wang Z D 2002 Phys. Rev. Lett. 89 097902 | Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases
[23] | Wilczek F and Zee A 1984 Phys. Rev. Lett. 52 2111 | Appearance of Gauge Structure in Simple Dynamical Systems
[24] | Sjoqvist E, Tong D M, Andersson L M, Hessmo B, Johansson M, and Singh K 2012 New J. Phys. 14 103035 | Non-adiabatic holonomic quantum computation
[25] | Feng G, Xu G, and Long G 2013 Phys. Rev. Lett. 110 190501 | Experimental Realization of Nonadiabatic Holonomic Quantum Computation
[26] | Abdumalikov A A, Fink J M, Juliusson K, Pechal M, Berger S, Wallraff A, and Filipp S 2013 Nature 496 482 | Experimental realization of non-Abelian non-adiabatic geometric gates
[27] | Zu C, Wang W B, He L, Zhang W G, Dai C Y, Wang F, and Duan L M 2014 Nature 514 72 | Experimental realization of universal geometric quantum gates with solid-state spins
[28] | Zhou B B et al. 2017 Phys. Rev. Lett. 119 140503 | Holonomic Quantum Control by Coherent Optical Excitation in Diamond
[29] | Xu Y et al. 2018 Phys. Rev. Lett. 121 110501 | Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit
[30] | Huang Y Y et al. 2019 Phys. Rev. Lett. 122 010503 | Experimental Realization of Robust Geometric Quantum Gates with Solid-State Spins
[31] | Yan T X et al. 2019 Phys. Rev. Lett. 122 080501 | Experimental Realization of Nonadiabatic Shortcut to Non-Abelian Geometric Gates
[32] | Xu Y et al. 2020 Phys. Rev. Lett. 124 230503 | Experimental Implementation of Universal Nonadiabatic Geometric Quantum Gates in a Superconducting Circuit
[33] | Zhang W L et al. 2021 Phys. Rev. Lett. 127 030502 | Single-Atom Verification of the Noise-Resilient and Fast Characteristics of Universal Nonadiabatic Noncyclic Geometric Quantum Gates
[34] | Solinas P, Zanardi P, and Zangh N 2004 Phys. Rev. A 70 042316 | Robustness of non-Abelian holonomic quantum gates against parametric noise
[35] | Zhu S L and Zanardi P 2005 Phys. Rev. A 72 020301 | Geometric quantum gates that are robust against stochastic control errors
[36] | Watson T F, Philips S G J, Kawakami E, Ward D R, Scarlino P, Veldhorst M, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A, and Vandersypen L M K 2018 Nature 555 633 | A programmable two-qubit quantum processor in silicon
[37] | Wolfowicz G, Maier-Flaig H, Marino R, Ferrier A, Vezin H, Morton J J L, and Goldner P 2015 Phys. Rev. Lett. 114 170503 | Coherent Storage of Microwave Excitations in Rare-Earth Nuclear Spins
[38] | Nickerson N H, Li Y, and Benjamin S C 2013 Nat. Commun. 4 1756 | Topological quantum computing with a very noisy network and local error rates approaching one percent
[39] | Nickerson N H, Fitzsimons J F, and Benjamin S C 2014 Phys. Rev. X 4 041041 | Freely Scalable Quantum Technologies Using Cells of 5-to-50 Qubits with Very Lossy and Noisy Photonic Links
[40] | Gundogan M, Ledingham P M, Kutluer K, Mazzera M, and de Riedmatten H 2015 Phys. Rev. Lett. 114 230501 | Solid State Spin-Wave Quantum Memory for Time-Bin Qubits
[41] | Jobez P et al. 2015 Phys. Rev. Lett. 114 230502 | Coherent Spin Control at the Quantum Level in an Ensemble-Based Optical Memory
[42] | Lauritzen B, M, J, de Riedmatten H, Afzelius M, Sangouard N, Simon C, and Gisin N 2010 Phys. Rev. Lett. 104 080502 | Telecommunication-Wavelength Solid-State Memory at the Single Photon Level
[43] | Zhou Z Q, Hua Y L, Liu X, Chen G, Xu J S, Han Y J, Li C F, and Guo G C 2015 Phys. Rev. Lett. 115 070502 | Quantum Storage of Three-Dimensional Orbital-Angular-Momentum Entanglement in a Crystal
[44] | Gong B, Tu T, Guo A L, Zhu L T, and Li C F 2021 Chin. Phys. Lett. 38 044201 | A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory