[1] | Hong C K, Ou Z Y, and Mandel L 1987 Phys. Rev. Lett. 59 2044 | Measurement of subpicosecond time intervals between two photons by interference
[2] | Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P, and Milburn G J 2007 Rev. Mod. Phys. 79 135 | Linear optical quantum computing with photonic qubits
[3] | Duan L M, Lukin M D, Cirac J I, and Zoller P 2001 Nature 414 413 | Long-distance quantum communication with atomic ensembles and linear optics
[4] | Sangouard N, Simon C, de Riedmatten H, and Gisin N 2011 Rev. Mod. Phys. 83 33 | Quantum repeaters based on atomic ensembles and linear optics
[5] | Kimble H J 2008 Nature 453 1023 | The quantum internet
[6] | Wehner S, Elkouss D, and Hanson R 2018 Science 362 eaam9288 | Quantum internet: A vision for the road ahead
[7] | Bhaskar M K, Riedinger R, Machielse B, Levonian D S, Nguyen C T, Knall E N, Park H, Englund D, Lončar M, Sukachev D D, and Lukin M D 2020 Nature 580 60 | Experimental demonstration of memory-enhanced quantum communication
[8] | Inoue K, Waks E, and Yamamoto Y 2002 Phys. Rev. Lett. 89 037902 | Differential Phase Shift Quantum Key Distribution
[9] | Marcikic I, de Riedmatten H, Tittel W, Zbinden H, Legré M, and Gisin N 2004 Phys. Rev. Lett. 93 180502 | Distribution of Time-Bin Entangled Qubits over 50 km of Optical Fiber
[10] | Raymer M G and Walmsley I A 2020 Phys. Scr. 95 064002 | Temporal modes in quantum optics: then and now
[11] | Specht H P, Bochmann J, Mücke M, Weber B, Figueroa E, Moehring D L, and Rempe G 2009 Nat. Photon. 3 469 | Phase shaping of single-photon wave packets
[12] | Pan J W, Chen Z B, Lu C Y, Weinfurter H, Zeilinger A, and Żukowski M 2012 Rev. Mod. Phys. 84 777 | Multiphoton entanglement and interferometry
[13] | Qian P, Gu Z, Cao R, Wen R, Ou Z Y, Chen J F, and Zhang W 2016 Phys. Rev. Lett. 117 013602 | Temporal Purity and Quantum Interference of Single Photons from Two Independent Cold Atomic Ensembles
[14] | Liu S, Lai X, Yang C, and Chen J F 2021 Chin. Phys. Lett. 38 084201 | Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud
[15] | Bussières F, Sangouard N, Afzelius M, de Riedmatten H, Simon C, and Tittel W 2013 J. Mod. Opt. 60 1519 | Prospective applications of optical quantum memories
[16] | Nunn J, Langford N K, Kolthammer W S, Champion T F M, Sprague M R, Michelberger P S, Jin X M, England D G, and Walmsley I A 2013 Phys. Rev. Lett. 110 133601 | Enhancing Multiphoton Rates with Quantum Memories
[17] | Kaneda F, Xu F, Chapman J, and Kwiat P G 2017 Optica 4 1034 | Quantum-memory-assisted multi-photon generation for efficient quantum information processing
[18] | Jing B, Wang X J, Yu Y, Sun P F, Jiang Y, Yang S J, Jiang W H, Luo X Y, Zhang J, Jiang X, Bao X H, and Pan J W 2019 Nat. Photon. 13 210 | Entanglement of three quantum memories via interference of three single photons
[19] | Boller K J, Imamoğlu A, and Harris S E 1991 Phys. Rev. Lett. 66 2593 | Observation of electromagnetically induced transparency
[20] | Hsiao Y F, Tsai P J, Chen H S, Lin S X, Hung C C, Lee C H, Chen Y H, Chen Y F, Yu I A, and Chen Y C 2018 Phys. Rev. Lett. 120 183602 | Highly Efficient Coherent Optical Memory Based on Electromagnetically Induced Transparency
[21] | Vernaz-Gris P, Huang K, Cao M, Sheremet A S, and Laurat J 2018 Nat. Commun. 9 363 | Highly-efficient quantum memory for polarization qubits in a spatially-multiplexed cold atomic ensemble
[22] | Wang Y, Li J, Zhang S, Su K, Zhou Y, Liao K, Du S, Yan H, and Zhu S L 2019 Nat. Photon. 13 346 | Efficient quantum memory for single-photon polarization qubits
[23] | Reim K F, Nunn J, Lorenz V O, Sussman B J, Lee K C, Langford N K, Jaksch D, and Walmsley I A 2010 Nat. Photon. 4 218 | Towards high-speed optical quantum memories
[24] | Ding D S, Zhang W, Zhou Z Y, Shi S, Shi B S, and Guo G C 2015 Nat. Photon. 9 332 | Raman quantum memory of photonic polarized entanglement
[25] | Guo J, Feng X, Yang P, Yu Z, Chen L Q, Yuan C H, and Zhang W 2019 Nat. Commun. 10 148 | High-performance Raman quantum memory with optimal control in room temperature atoms
[26] | Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094 | Dark-State Polaritons in Electromagnetically Induced Transparency
[27] | Patnaik A K, Kien F L, and Hakuta K 2004 Phys. Rev. A 69 035803 | Manipulating the retrieval of stored light pulses
[28] | Chen B, Qiu C, Chen S, Guo J, Chen L Q, Ou Z Y, and Zhang W 2015 Phys. Rev. Lett. 115 043602 | Atom-Light Hybrid Interferometer
[29] | Qiu C, Chen S, Chen L Q, Chen B, Guo J, Ou Z Y, and Zhang W 2016 Optica 3 775 | Atom–light superposition oscillation and Ramsey-like atom–light interferometer
[30] | Guo X, Mei Y, and Du S 2018 Phys. Rev. A 97 063805 | Single photon at a configurable quantum-memory-based beam splitter
[31] | Mair A, Hager J, Phillips D F, Walsworth R L, and Lukin M D 2002 Phys. Rev. A 65 031802 | Phase coherence and control of stored photonic information
[32] | Lukin M D 2003 Rev. Mod. Phys. 75 457 | Colloquium : Trapping and manipulating photon states in atomic ensembles
[33] | Jeong T, Park J, and Moon H S 2017 Sci. Rep. 7 15559 | Determining phase coherence time of stored light in warm atomic vapor
[34] | Li J F, Wang Y F, Su K Y, Liao K Y, Zhang S C, Yan H, and Zhu S L 2019 Chin. Phys. Lett. 36 074202 | Generation of Gaussian-Shape Single Photons for High Efficiency Quantum Storage
[35] | Legero T, Wilk T, Hennrich M, Rempe G, and Kuhn A 2004 Phys. Rev. Lett. 93 070503 | Quantum Beat of Two Single Photons
[36] | Yan H, Zhu S L, and Du S W 2011 Chin. Phys. Lett. 28 070307 | Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons
[37] | Knill E, Laflamme R, and Milburn G J 2001 Nature 409 46 | A scheme for efficient quantum computation with linear optics