[1] | Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81 | Dark optical solitons: physics and applications
[2] | Kharif C and Pelinovsky E 2003 Eur. J. Mech. B 22 603 | Physical mechanisms of the rogue wave phenomenon
[3] | Wang C, Law K J H, Kevrekidis P G, and Porter M A 2013 Phys. Rev. A 87 023621 | Dark solitary waves in a class of collisionally inhomogeneous Bose-Einstein condensates
[4] | Kibler B, Fatome J, Finot C, Millot G, Dias F, Genty G, Akhmediev N, and Dudley J M 2010 Nat. Phys. 6 790 | The Peregrine soliton in nonlinear fibre optics
[5] | Wazwaz A M 2017 Math. Methods Appl. Sci. 40 4128 | A study on a two-wave mode Kadomtsev-Petviashvili equation: conditions for multiple soliton solutions to exist
[6] | Kamchatnov A M and Korneev S V 2010 Phys. Lett. A 374 4625 | Dynamics of ring dark solitons in Bose–Einstein condensates and nonlinear optics
[7] | Wazwaz A M 2017 Appl. Math. Lett. 70 1 | A two-mode modified KdV equation with multiple soliton solutions
[8] | Haus H A and Wong W S 1996 Rev. Mod. Phys. 68 423 | Solitons in optical communications
[9] | Serkin V N, Hasegawa A, and Belyaeva T L 2007 Phys. Rev. Lett. 98 074102 | Nonautonomous Solitons in External Potentials
[10] | Roy S and Bhadra S 2008 Commun. Nonlinear Sci. Numer. Simul. 13 2157 | Effect of two photon absorption on nonlinear pulse propagation in gain medium
[11] | Chen Z G, Segev M, and Christodoulides D N 2012 Rep. Prog. Phys. 75 086401 | Optical spatial solitons: historical overview and recent advances
[12] | Konotop V V, Shchesnovich V S, and Zezyulin D A 2012 Phys. Lett. A 376 2750 | Giant amplification of modes in parity-time symmetric waveguides
[13] | Zuo D W and Zhang G F 2019 Appl. Math. Lett. 93 66 | Exact solutions of the nonlocal Hirota equations
[14] | Zhang Y S and He J S 2019 Chin. Phys. Lett. 36 030201 | Bound-State Soliton Solutions of the Nonlinear Schrödinger Equation and Their Asymmetric Decompositions
[15] | Yu F J 2019 Appl. Math. Lett. 92 108 | Inverse scattering solutions and dynamics for a nonlocal nonlinear Gross–Pitaevskii equation with PT-symmetric external potentials
[16] | Xie X Y and Meng G Q 2019 Appl. Math. Lett. 92 201 | Multi-dark soliton solutions for a coupled AB system in the geophysical flows
[17] | Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501 | Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrödinger Equation *
[18] | Lan Z Z 2018 Appl. Math. Lett. 86 243 | Multi-soliton solutions for a (2+1)-dimensional variable-coefficient nonlinear Schrödinger equation
[19] | Li M and Xu T 2015 Phys. Rev. E 91 033202 | Dark and antidark soliton interactions in the nonlocal nonlinear Schrödinger equation with the self-induced parity-time-symmetric potential
[20] | Lan Z Z 2019 Appl. Math. Lett. 94 126 | Periodic, breather and rogue wave solutions for a generalized (3+1)-dimensional variable-coefficient B-type Kadomtsev–Petviashvili equation in fluid dynamics
[21] | Xu T, Lan S, Li M, Li L L, and Zhang G W 2019 Physica D 390 47 | Mixed soliton solutions of the defocusing nonlocal nonlinear Schrödinger equation
[22] | Chen J, Luan Z, Zhou Q, Alzahrani A K, Biswas A, and Liu W J 2020 Nonlinear Dyn. 100 2817 | Periodic soliton interactions for higher-order nonlinear Schrödinger equation in optical fibers
[23] | Deng Q and Yao X 2020 J. Math. Phys. 61 041504 | Asymptotic stability of multi-soliton solutions for nonlinear Schrödinger equations with time-dependent potential
[24] | Ping T J and Sheng Z 2005 J. Optoelectron. Laser 16 120 |
[25] | Mollenauer L F and Smith K 1988 Opt. Lett. 13 675 | Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain
[26] | Mollenauer L F and Smith K 1989 Opt. Lett. 14 1284 | Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction
[27] | Bao J D 1992 Chin. Phys. Lett. 9 1 | Accurate Monte-Carlo Tests of the Stochastic Ginzburg-Landau Model with Multiplicative Colored Noise
[28] | Han Q and Zhang L Y 1998 Chin. Phys. Lett. 15 742 | Ginzburg-Landau Equations for ( d+s )-Wave Superconductors in a Non-Fermi Liquid
[29] | Uzunov I M, Georgiev Z D, and Arabadzhiev T N 2018 Phys. Rev. E 97 052215 | Transitions of stationary to pulsating solutions in the complex cubic-quintic Ginzburg-Landau equation under the influence of nonlinear gain and higher-order effects
[30] | Li J F, Jiang Y, Sun W M, Wang F, and Zong H S 2010 Chin. Phys. Lett. 27 087403 | Decomposition of Gauge Potential in Ginzburg–Landau Theory
[31] | Yan Y Y and Liu W J 2019 Appl. Math. Lett. 98 171 | Stable transmission of solitons in the complex cubic–quintic Ginzburg–Landau equation with nonlinear gain and higher-order effects
[32] | Wang L L and Liu W J 2020 Chin. Phys. B 29 070502 | Stable soliton propagation in a coupled (2 + 1) dimensional Ginzburg–Landau system
[33] | Moores J D 1993 Opt. Commun. 96 65 | On the Ginzburg-Landau laser mode-locking model with fifth-order saturable absorber term
[34] | Firth W J and Scroggie A J 1996 Phys. Rev. Lett. 76 1623 | Optical Bullet Holes: Robust Controllable Localized States of a Nonlinear Cavity
[35] | Grelu P and Akhmediev N 2004 Opt. Express 12 3184 | Group interactions of dissipative solitons in a laser cavity: the case of 2+1
[36] | Gurevich S V, Schelte C, and Javaloyes J 2019 Phys. Rev. A 99 61803 | Impact of high-order effects on soliton explosions in the complex cubic-quintic Ginzburg-Landau equation
[37] | Nozaki K and Bekki N 1984 J. Phys. Soc. Jpn. 53 1581 | Exact Solutions of the Generalized Ginzburg-Landau Equation
[38] | Kalashnikov V L 2009 Phys. Rev. E 80 46606 | Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg-Landau equation
[39] | Yan Y Y, Liu W J, Zhou Q, and Biswas A 2020 Nonlinear Dyn. 99 1313 | Dromion-like structures and periodic wave solutions for variable-coefficients complex cubic–quintic Ginzburg–Landau equation influenced by higher-order effects and nonlinear gain
[40] | N, Maan N, Goyal A, Raju T S, and Kumar C N 2020 Phys. Lett. A 384 126675 | Chirped Lambert W-kink solitons of the complex cubic-quintic Ginzburg-Landau equation with intrapulse Raman scattering
[41] | Yin X, Chen L, Wang J, Zhang X, and Ma G 2021 Alexandria Eng. J. 60 889 | Investigation on breather waves and rogue waves in applied mechanics and physics
[42] | Akhmediev N N, Afanasjev V V, and Soto-Crespo J M 1996 Phys. Rev. E 53 1190 | Singularities and special soliton solutions of the cubic-quintic complex Ginzburg-Landau equation
[43] | Akhmediev N N, Ankiewicz A, and Soto-Crespo J M 1998 J. Opt. Soc. Am. B 15 515 | Stable soliton pairs in optical transmission lines and fiber lasers
[44] | Wu X, Tang D Y, Zhang H, and Zhao L M 2009 Opt. Express 17 5580 | Dissipative soliton resonance in an all-normaldispersion erbium-doped fiber laser
[45] | Zheng Z, Ouyang D, and Ren X 2019 Photon. Res. 7 513 | 033 mJ, 1043 W dissipative soliton resonance based on a figure-of-9 double-clad Tm-doped oscillator and an all-fiber MOPA system
[46] | Zhang X, Gu C, and Chen G 2012 Opt. Lett. 37 1334 | Square-wave pulse with ultra-wide tuning range in a passively mode-locked fiber laser
[47] | Grelu P and Akhmediev N 2012 Nat. Photon. 6 84 | Dissipative solitons for mode-locked lasers
[48] | Singh P G, Rajib P, Malomed B A, and Soumendu J 2018 J. Opt. 20 105501 | Dispersion-managed soliton fiber laser with random dispersion, multiphoton absorption and gain dispersion
[49] | Huang L G, Pang L H, Wong P, Li Y Q, and Bai S Y 2016 Ann. Phys. 528 493 | Analytic soliton solutions of cubic-quintic Ginzburg-Landau equation with variable nonlinearity and spectral filtering in fiber lasers
[50] | Zakeri G A and Yomba E 2013 J. Phys. Soc. Jpn. 82 084002 | Dissipative Solitons in a Generalized Coupled Cubic–Quintic Ginzburg–Landau Equations