[1] | Dirac P A M 1928 Proc. R. Soc. London Ser. A 117 610 | The quantum theory of the electron
[2] | Anderson C D 1933 Phys. Rev. 43 491 | The Positive Electron
[3] | Heisenberg W and Euler H 1936 Z. Phys. 98 714 | Folgerungen aus der Diracschen Theorie des Positrons
[4] | Weisskopf V 1936 Kong. Dan. Vid. Sel. Mat. Fys. Med. 14N6 1 |
[5] | Schwinger J 1951 Phys. Rev. 82 664 | On Gauge Invariance and Vacuum Polarization
[6] | Salam A and Strathdee J A 1975 Nucl. Phys. B 90 203 | Transition electromagnetic fields in particle physics
[7] | Blau S K, Visser M, and Wipf A 1991 Int. J. Mod. Phys. A 6 5409 | ANALYTIC RESULTS FOR THE EFFECTIVE ACTION
[8] | Dolan L and Jackiw R 1974 Phys. Rev. D 9 3320 | Symmetry behavior at finite temperature
[9] | Shuryak E V 1980 Phys. Rep. 61 71 | Quantum chromodynamics and the theory of superdense matter
[10] | Kapusta J and Gale C 2006 Finite-temperature field theory: principles and applications (2nd edition), Cambridge university press, Cambridge |
[11] | Cangemi D and Dunne G V 1996 Ann. Phys. 249 582 | Temperature Expansions for Magnetic Systems
[12] | Hebenstreit F, Alkofer R, and Gies H 2010 Phys. Rev. D 82 105026 | Schwinger pair production in space- and time-dependent electric fields: Relating the Wigner formalism to quantum kinetic theory
[13] | Sheng X L, Rischke D H, Vasak D, and Wang Q 2018 Eur. Phys. J. A 54 21 | Wigner functions for fermions in strong magnetic fields
[14] | Sheng X L, Fang R H, Wang Q, and Rischke D H 2019 Phys. Rev. D 99 056004 | Wigner function and pair production in parallel electric and magnetic fields
[15] | Vasak D, Gyulassy M, and Elze H T 1987 Ann. Phys. 173 462 | Quantum transport theory for abelian plasmas
[16] | Gao J H, Liang Z T, Pu S, Wang Q, and Wang X N 2012 Phys. Rev. Lett. 109 232301 | Chiral Anomaly and Local Polarization Effect from the Quantum Kinetic Approach
[17] | Chen J W, Pu S, Wang Q, and Wang X N 2013 Phys. Rev. Lett. 110 262301 | Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation
[18] | Hidaka Y, Pu S, and Yang D L 2017 Phys. Rev. D 95 091901 | Relativistic chiral kinetic theory from quantum field theories
[19] | Gao J H, Liang Z T, Wang Q, and Wang X N 2018 Phys. Rev. D 98 036019 | Disentangling covariant Wigner functions for chiral fermions
[20] | Yang S Z, Gao J H, Liang Z T, and Wang Q 2020 Phys. Rev. D 102 116024 | Second-order charge currents and stress tensor in a chiral system
[21] | Guo X 2020 Chin. Phys. C 44 104106 | Massless limit of transport theory for massive Fermions
[22] | Itokazu K, Yanase K, and Yoshinaga N 2018 JPS Conf. Proc. 23 013003 | Quark Star in a Strong Magnetic Field
[23] | Reisenegger A 2013 arXiv:1305.2542 [astro-ph.SR] | Magnetic fields of neutron stars
[24] | Islam S and Basu S 2018 Chin. Phys. Lett. 35 099501 | Magnetic Field of a Compact Spherical Star under f ( R , T ) Gravity
[25] | Kharzeev D E, McLerran L D, and Warringa H J 2008 Nucl. Phys. A 803 227 | The effects of topological charge change in heavy ion collisions: “Event by event and violation”
[26] | Fukushima K, Kharzeev D E, and Warringa H J 2008 Phys. Rev. D 78 074033 | Chiral magnetic effect
[27] | Feng B, Hou D F, and Ren H C 2019 Phys. Rev. D 99 036010 | QED radiative corrections to chiral magnetic effect
[28] | Shi S, Liao J, and Gyulassy M 2019 Chin. Phys. C 43 044101 | Global constraints from RHIC and LHC on transport properties of QCD fluids in CUJET/CIBJET framework
[29] | Adam J et al. (STAR collaboration) 2021 Nucl. Sci. Tech. 32 48 | Methods for a blind analysis of isobar data collected by the STAR collaboration
[30] | Liang G R, Liao J, Lin S, Yan L, and Li M 2020 Chin. Phys. C 44 094103 | Chiral magnetic effect in isobar collisions from stochastic hydrodynamics
[31] | Gao J H, Ma G L, Pu S, and Wang Q 2020 Nucl. Sci. Tech. 31 90 | Recent developments in chiral and spin polarization effects in heavy-ion collisions
[32] | Liu Y C and Huang X G 2020 Nucl. Sci. Tech. 31 56 | Anomalous chiral transports and spin polarization in heavy-ion collisions
[33] | Son D T and Zhitnitsky A R 2004 Phys. Rev. D 70 074018 | Quantum anomalies in dense matter
[34] | Metlitski M A and Zhitnitsky A R 2005 Phys. Rev. D 72 045011 | Anomalous axion interactions and topological currents in dense matter
[35] | Lin S and Yang L 2018 Phys. Rev. D 98 114022 | Mass correction to chiral vortical effect and chiral separation effect
[36] | Bali G S, Bruckmann F, Endrodi G, Gruber F, and Schaefer A 2013 J. High Energy Phys. 2013(04) 130 | Magnetic field-induced gluonic (inverse) catalysis and pressure (an)isotropy in QCD
[37] | Mao S 2016 Chin. Phys. Lett. 33 112501 | Deconfinement Phase Transition with External Magnetic Field in the Friedberg—Lee Model
[38] | Mao S, Wu Y, and Zhuang P 2018 JPS Conf. Proc. 20 011009 | Strongly Interacting Matter in Magnetic Field
[39] | Ballon-Bayona A, Shock J P, and Zoakos D 2020 J. High Energy Phys. 2020(10) 193 | Magnetic catalysis and the chiral condensate in holographic QCD
[40] | Bali G S, Endrődi G, and Piemonte S 2020 J. High Energy Phys. 2020(07) 183 | Magnetic susceptibility of QCD matter and its decomposition from the lattice
[41] | Ding H T, Li S T, Shi Q, Tomiya A, Wang X D, and Zhang Y 2021 Acta Phys. Polon. Suppl. 14 403 | QCD Phase Structure in Strong Magnetic Fields
[42] | Buividovich P V, Smith D, and Von Smekal L 2021 arXiv:2104.10012 [hep-lat] | Static magnetic susceptibility in finite-density SU(2) lattice gauge theory
[43] | Dong R D, Fang R H, Hou D F, and She D 2020 Chin. Phys. C 44 074106 | Chiral magnetic effect for chiral fermion system
[44] | Gao J H, Liang Z T, and Wang Q 2020 Phys. Rev. D 101 096015 | Dirac sea and chiral anomaly in the quantum kinetic theory
[45] | Zhang C, Fang R H, Gao J H, and Hou D F 2020 Phys. Rev. D 102 056004 | Thermodynamics of chiral fermion system in a uniform magnetic field
[46] | Dariescu M A and Dariescu C 2015 Chin. Phys. Lett. 32 071101 | Heun Functions Describing Fermions Evolving in Parallel Electric and Magnetic Fields
[47] | Sheng X L 2019 PhD Dissertation (Frankfurt University) |
[48] | Ni G J and Chen S Q 2003 Advanced Quantum Mechanics 2nd edn (Shanghai: Fudan University Press) |
[49] | Peng H W and Xu X S 2011 Foundations of Theoretical Physics (Beijing: Peking University Press) |
[50] | Pauli W 1927 Z. Phys. 41 81 | Über Gasentartung und Paramagnetismus
[51] | Landau L 1930 Z. Phys. 64 629 | Diamagnetismus der Metalle
[52] | Peskin M and Schroeder D 1995 An Introduction to Quantum Field Theory (New York: Westview Press) |
[53] | Hou D F and Lin S 2018 Phys. Rev. D 98 054014 | Fluctuation and dissipation of axial charge from massive quarks
[54] | Gorbar E V, Miransky V A, Shovkovy I A, and Wang X 2013 Phys. Rev. D 88 025025 | Radiative corrections to chiral separation effect in QED
[55] | Kharzeev D E and Son D T 2011 Phys. Rev. Lett. 106 062301 | Testing the Chiral Magnetic and Chiral Vortical Effects in Heavy Ion Collisions