[1] | Benney D J and Newell A C 1967 J. Math. Phys. 46 133 | The Propagation of Nonlinear Wave Envelopes
[2] | Shukla P K and Eliasson B 2010 Phys. -Usp. 53 51 | Nonlinear aspects of quantum plasma physics
[3] | Dalfovo F, Giorgini S, Pitaevskii L P, and Stringari S 1999 Rev. Mod. Phys. 71 463 | Theory of Bose-Einstein condensation in trapped gases
[4] | Agrawal G P 2001 Nonlinear Fiber Optics 3rd edn (San Diego: Academic Press) |
[5] | Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford: Clarendon Press) |
[6] | Kivshar Y S and Agrawal G P 2003 Optical Solitons: From Fibers to Photonic Crystals (San Diego: Academic Press) |
[7] | Hirota R 1973 J. Math. Phys. 14 805 | Exact envelope‐soliton solutions of a nonlinear wave equation
[8] | Tasgal R S and Potasek M J 1992 J. Math. Phys. 33 1208 | Soliton solutions to coupled higher‐order nonlinear Schrödinger equations
[9] | Kodama Y and Hasegawa A 1987 IEEE J. Quantum Electron. 23 510 | Nonlinear pulse propagation in a monomode dielectric guide
[10] | Sirota E B 2001 Phys. Rev. E 64 050701 | Compositionally modulated phase in crystalline n -alkane mixtures
[11] | Kang Z Z and Xia T C 2019 Chin. Phys. Lett. 36 110201 | Construction of Multi-soliton Solutions of the N -Coupled Hirota Equations in an Optical Fiber *
[12] | Ankiewicz A, Soto-Crespo J M, and Akhmediev N 2010 Phys. Rev. E 81 046602 | Rogue waves and rational solutions of the Hirota equation
[13] | Tao Y S and He J S 2012 Phys. Rev. E 85 026601 | Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation
[14] | Wang D S, Chen F, and Wen X Y 2016 Adv. Differ. Eq. 2016 67 | Darboux transformation of the general Hirota equation: multisoliton solutions, breather solutions, and rogue wave solutions
[15] | Chen S Y and Yan Z Y 2019 Appl. Math. Lett. 95 65 | The Hirota equation: Darboux transform of the Riemann–Hilbert problem and higher-order rogue waves
[16] | Chowdury A, Ankiewicz A, and Akhmediev N 2015 Proc. R. Soc. A 471 20150130 | Moving breathers and breather-to-soliton conversions for the Hirota equation
[17] | Zhang H Q and Yuan S S 2017 Nonlinear Dyn. 89 531 | Dark soliton solutions of the defocusing Hirota equation by the binary Darboux transformation
[18] | Zhang X E and Ling L M 2021 Physica D 426 132982 | Asymptotic analysis of high-order solitons for the Hirota equation
[19] | Bindu S G, Mahalingam A, and Porsezian K 2001 Phys. Lett. A 286 321 | Dark soliton solutions of the coupled Hirota equation in nonlinear fiber
[20] | Mahalingam A and Porsezian K 2001 Phys. Rev. E 64 046608 | Propagation of dark solitons with higher-order effects in optical fibers
[21] | Zhao L C, Qin Y H, Wang W L, Yang Z Y 2020 Chin. Phys. Lett. 37 050502 | A Direct Derivation of the Dark Soliton Excitation Energy
[22] | Qin Y H, Zhao L C, Yang Z Q, and Ling L M 2021 Phys. Rev. E 104 014201 | Multivalley dark solitons in multicomponent Bose-Einstein condensates with repulsive interactions
[23] | Sheppard A P and Kivshar Y S 1997 Phys. Rev. E 55 4773 | Polarized dark solitons in isotropic Kerr media
[24] | Lakomy K, Nath R, and Santos L 2012 Phys. Rev. A 86 013610 | Soliton molecules in dipolar Bose-Einstein condensates
[25] | Lou S Y 2019 arXiv:1909.03399v1 [nlin.SI] | Soliton molecules and asymmetric solitons in fluid systems via velocity resonance
[26] | Xu D H and Lou S Y 2020 Acta Phys. Sin. 69 014208 (in Chinese) | Dark soliton molecules in nonlinear optics
[27] | Feng B F 2014 J. Phys. A 47 355203 | General N -soliton solution to a vector nonlinear Schrödinger equation
[28] | Xie X Y and Liu X B 2020 Appl. Math. Lett. 105 106291 | Elastic and inelastic collisions of the semirational solutions for the coupled Hirota equations in a birefringent fiber
[29] | Stalin S, Ramakrishnan R, Senthilvelan M, and Lakshmanan M 2019 Phys. Rev. Lett. 122 043901 | Nondegenerate Solitons in Manakov System
[30] | Ramakrishnan R, Stalin S, and Lakshmanan M 2020 Phys. Rev. E 102 042212 | Nondegenerate solitons and their collisions in Manakov systems
[31] | Stalin S, Ramakrishnan R, and Lakshmanan M 2020 Phys. Lett. A 384 126201 | Nondegenerate soliton solutions in certain coupled nonlinear Schrödinger systems
[32] | Liu L, Tian B, Chai H P, and Yuan Y Q 2017 Phys. Rev. E 95 032202 | Certain bright soliton interactions of the Sasa-Satsuma equation in a monomode optical fiber
[33] | Xu T, Wang D, Li M, and Liang H 2014 Phys. Scr. 89 075207 | Soliton and breather solutions of the Sasa–Satsuma equation via the Darboux transformation
[34] | Zhang Y S and He J S 2019 Chin. Phys. Lett. 36 030201 | Bound-State Soliton Solutions of the Nonlinear Schrödinger Equation and Their Asymmetric Decompositions
[35] | Wang B, Zhang Z, and Li B 2020 Chin. Phys. Lett. 37 030501 | Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schrödinger Equation *
[36] | Rogers C and Schief W K 2002 Bäcklund and Darboux Transformations: Geometry and Modern Applications in Soliton Theory (Cambridge: Cambridge University Press) |
[37] | Matveev V and Salle M A 1991 Darboux Transformations and Solitons (Berlin: Springer) |
[38] | Gu C H, Hu H S, and Zhou Z X 2005 Darboux Transformations in Integrable Systems: Theory and Their Applications to Geometry (Dordrecht: Springer) |
[39] | Wu Y H, Liu C, Yang Z Y, and Yang W L 2020 Chin. Phys. Lett. 37 040501 | Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction
[40] | Wang X and Wang L 2018 Chin. Phys. Lett. 35 030201 | Soliton, Breather and Rogue Wave Solutions for the Nonlinear Schrödinger Equation Coupled to a Multiple Self-Induced Transparency System
[41] | Ling L M, Zhao L C, and Guo B L 2015 Nonlinearity 28 3243 | Darboux transformation and multi-dark soliton for N -component nonlinear Schrödinger equations
[42] | Krökel D, Halas N, Giuliani G, and Grischkowsky D 1988 Phys. Rev. Lett. 60 29 | Dark-Pulse Propagation in Optical Fibers
[43] | Liu W J et al. 2015 Opt. Express 23 26023 | Generation of dark solitons in erbium-doped fiber lasers based Sb_2Te_3 saturable absorbers
[44] | Stratmann M, Pagel T, and Mitschke F 2005 Phys. Rev. Lett. 95 143902 | Experimental Observation of Temporal Soliton Molecules
[45] | Gouveia-Neto A S, Gomes A S L, and Taylor J R 1987 Opt. Lett. 12 395 | Generation of 33-fsec pulses at 132 μm through a high-order soliton effect in a single-mode optical fiber
[46] | Weiner A M et al. 1988 Phys. Rev. Lett. 61 2445 | Experimental Observation of the Fundamental Dark Soliton in Optical Fibers
[47] | Meshulach D and Silberberg Y 1998 Nature 396 239 | Coherent quantum control of two-photon transitions by a femtosecond laser pulse
[48] | Liu W J et al. 2020 Commun. Phys. 3 15 | Ultrafast photonics of two dimensional AuTe2Se4/3 in fiber lasers
[49] | Liu W J et al. 2017 Opt. Express 25 2950 | Tungsten disulfide saturable absorbers for 67 fs mode-locked erbium-doped fiber lasers
[50] | Herink G et al. 2017 Science 356 50 | Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules