[1] | Crane R A and Scott T B 2013 J. Nanotechnol. 2013 173625 | The Effect of Vacuum Annealing of Magnetite and Zero-Valent Iron Nanoparticles on the Removal of Aqueous Uranium
[2] | Cornell R M and Schwertmann U 2004 The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses 2nd edn (New York: Wiley-VCH Verlag) |
[3] | Wood B J, Bryndzia L T, and Johnson K E 1990 Science 248 337 | Mantle Oxidation State and Its Relationship to Tectonic Environment and Fluid Speciation
[4] | Cornell R M and Schwertmann U 2004 The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses 2nd edn (New York: Wiley-VCH Verlag) p 1 |
[5] | Rosales S, Casillas N, Topete A, Cervantes O, Gonzalez G, Paz J A, and Cano M E 2020 Chin. Phys. B 29 100502 | Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
[6] | Hua L Z, Xiang L, and Wei L 2019 Chin. Phys. B 28 077504 | Field-variable magnetic domain characterization of individual 10 nm Fe 3 O 4 nanoparticles
[7] | Yu W Q, Qiu Y C, Xiao H J, Yang H T, and Wang G M 2019 Chin. Phys. B 28 108103 | Flexible rGO/Fe 3 O 4 NPs/polyurethane film with excellent electromagnetic properties
[8] | Wenjun Y, Xiaomin Z, Huan L, Chunwei G, Min L, and Houpan Z 2019 Chin. Phys. B 28 106801 | Highly reliable and selective ethanol sensor based on α-Fe 2 O 3 nanorhombs working in realistic environments
[9] | Yang Y, Zhang Q, Mi W, and Zhang X 2020 Chin. Phys. B 29 083302 | Lattice deformation in epitaxial Fe 3 O 4 films on MgO substrates studied by polarized Raman spectroscopy
[10] | Hu Q Y, Kim D Y, Yang W G, Yang L X, and Meng Y 2016 Nature 534 241 | FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles
[11] | Nishi M, Kuwayama Y, Tsuchiya J, and Tsuchiya T 2017 Nature 547 205 | The pyrite-type high-pressure form of FeOOH
[12] | Lavina B, Dera P, Kim E, Meng Y, and Downs R T 2011 Proc. Natl. Acad. Sci. USA 108 17281 | Discovery of the recoverable high-pressure iron oxide Fe4O5
[13] | Lavina B and Meng Y 2015 Sci. Adv. 1 e1400260 | Unraveling the complexity of iron oxides at high pressure and temperature: Synthesis of Fe 5 O 6
[14] | Zhang X L, Niu Z W, Tang M, Zhao J Z, and Cai L C 2017 J. Alloys Compd. 719 42 | First-principles thermoelasticity and stability of pyrite-type FeO 2 under high pressure and temperature
[15] | Sinmyo R, Bykova E, Ovsyannikov S V, McCammon C, and Kupenko I 2016 Sci. Rep. 6 32852 | Discovery of Fe7O9: a new iron oxide with a complex monoclinic structure
[16] | Merlini M, Hanfland M, Salamat A, Petitgirard S, and Müller H 2015 Am. Mineral. 100 2001 | The crystal structures of Mg 2 Fe 2 C 4 O 13 , with tetrahedrally coordinated carbon, and Fe 13 O 19 , synthesized at deep mantle conditions
[17] | Koutaro H, Ryosuke S, Kei H, Takayuki I, and Yasuo O 2019 Am. Mineral. 104 1356 | The stability of Fe5O6 and Fe4O5 at high pressure and temperature
[18] | Ovsyannikov S V, Maxim B, Medvedev S A, and Naumov P G 2020 Angew. Chem. 59 5632 | A Room‐Temperature Verwey‐type Transition in Iron Oxide, Fe 5 O 6
[19] | Kotliar G 2006 Rev. Mod. Phys. 78 865 | Electronic structure calculations with dynamical mean-field theory
[20] | Blaha P, Schwarz K, Madsen G K H, Kvasnick K, and Luitz J 2001 Wien2K ed Schwarz K (Technische Universitat Wien) |
[21] | Wu Z G and Cohen R E 2006 Phys. Rev. B 73 235116 | More accurate generalized gradient approximation for solids
[22] | Haule K 2015 Phys. Rev. Lett. 115 196403 | Exact Double Counting in Combining the Dynamical Mean Field Theory and the Density Functional Theory
[23] | Gull E, Millis A J, Lichtenstein A I, Rubtsov A N, Troyer M, and Werner P 2011 Rev. Mod. Phys. 83 349 | Continuous-time Monte Carlo methods for quantum impurity models
[24] | Werner P, Comanac A, and de'Medici L 2006 Phys. Rev. Lett. 97 076405 | Continuous-Time Solver for Quantum Impurity Models
[25] | Haule K 2007 Phys. Rev. B 75 155113 | Quantum Monte Carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base
[26] | Georges A, Kotliar G, Krauth W, and Rozenberg M J 1996 Rev. Mod. Phys. 68 13 | Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions
[27] | Madsen G K H and Novak P 2005 Europhys. Lett. 69 777 | Charge order in magnetite. An LDA+ U study
[28] | Jarrell M and Gubernatis J E 1996 Phys. Rep. 269 133 | Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data
[29] | Bo G J, Kim D Y, and Ji H S 2017 Phys. Rev. B 95 075144 | Metal-insulator transition and the role of electron correlation in
[30] | Koemets E 2021 Phys. Rev. Lett. 126 106001 | Revealing the Complex Nature of Bonding in the Binary High-Pressure Compound
[31] | Cohen R E, Mazin I I, and Isaak D G 1997 Science 275 654 | Magnetic Collapse in Transition Metal Oxides at High Pressure: Implications for the Earth
[32] | Eran G 2018 Phys. Rev. X 8 031059 | Pressure-Induced Site-Selective Mott Insulator-Metal Transition in
[33] | Kunes J, Korotin D M, Korotin M A, Anisimov V I, and Werner P 2009 Phys. Rev. Lett. 102 146402 | Pressure-Driven Metal-Insulator Transition in Hematite from Dynamical Mean-Field Theory
[34] | Kunes J, Lukoyanov A V, Anisimov V I, Scalettar R T, and Pickett W E 2008 Nat. Mater. 7 198 | Collapse of magnetic moment drives the Mott transition in MnO
[35] | Ohta K, Cohen R E, Hirose K, Haule K, Shimizu K, and Ohishi Y 2012 Phys. Rev. Lett. 108 026403 | Experimental and Theoretical Evidence for Pressure-Induced Metallization in FeO with Rocksalt-Type Structure
[36] | Leonov I 2015 Phys. Rev. B 92 085142 | Metal-insulator transition and local-moment collapse in FeO under pressure