[1] | Chen G 2005 Nanoscale Energy Transport and Conversion (Oxford: Oxford University Press) |
[2] | Dubi Y and Di Ventra M 2011 Rev. Mod. Phys. 83 131 | Colloquium : Heat flow and thermoelectricity in atomic and molecular junctions
[3] | Jiang J H and Imry Y 2016 C. R. Phys. 17 1047 | Linear and nonlinear mesoscopic thermoelectric transport with coupling with heat baths
[4] | Benenti G, Casati G, Saito K, and Whitney R S 2017 Phys. Rep. 694 1 | Fundamental aspects of steady-state conversion of heat to work at the nanoscale
[5] | Sivan U and Imry Y 1986 Phys. Rev. B 33 551 | Multichannel Landauer formula for thermoelectric transport with application to thermopower near the mobility edge
[6] | Mahan G D and Sofo J O 1996 Proc. Natl. Acad. Sci. USA 93 7436 | The best thermoelectric.
[7] | Goldsmid H J 2010 Introduction to Thermoelectricity (Berlin: Springer) |
[8] | Venkatasubramanian R, Silvola E, Colpitts T, and O'Quinn B 2001 Nature 413 597 | Thin-film thermoelectric devices with high room-temperature figures of merit
[9] | Jiang J H, Weng M Q, and Wu M W 2006 J. Appl. Phys. 100 063709 | Intense terahertz laser fields on a quantum dot with Rashba spin-orbit coupling
[10] | Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601 | Reversible Thermoelectric Nanomaterials
[11] | Zhou J, Yang R, Chen G, and Dresselhaus M S 2011 Phys. Rev. Lett. 107 226601 | Optimal Bandwidth for High Efficiency Thermoelectrics
[12] | Lu J, Wang R, Liu Y, and Jiang J H 2017 J. Appl. Phys. 122 044301 | Thermoelectric cooperative effect in three-terminal elastic transport through a quantum dot
[13] | Lin Z, Yang Y Y, Li W, Wang J, and He J 2020 Phys. Rev. E 101 022117 | Three-terminal refrigerator based on resonant-tunneling quantum wells
[14] | Sánchez R and Büttiker M 2011 Phys. Rev. B 83 085428 | Optimal energy quanta to current conversion
[15] | Sánchez D and López R 2013 Phys. Rev. Lett. 110 026804 | Scattering Theory of Nonlinear Thermoelectric Transport
[16] | Simine L and Segal D 2012 Phys. Chem. Chem. Phys. 14 13820 | Vibrational cooling, heating, and instability in molecular conducting junctions: full counting statistics analysis
[17] | Jiang J H, Entin-Wohlman O, and Imry Y 2012 Phys. Rev. B 85 075412 | Thermoelectric three-terminal hopping transport through one-dimensional nanosystems
[18] | Jordan A N, Sothmann B, Sánchez R, and Büttiker M 2013 Phys. Rev. B 87 075312 | Powerful and efficient energy harvester with resonant-tunneling quantum dots
[19] | Sothmann B, Sánchez R, and Jordan A N 2015 Nanotechnology 26 032001 | Thermoelectric energy harvesting with quantum dots
[20] | Li L and Jiang J H 2016 Sci. Rep. 6 31974 | Staircase Quantum Dots Configuration in Nanowires for Optimized Thermoelectric Power
[21] | Agarwalla B K, Jiang J H, and Segal D 2017 Phys. Rev. B 96 104304 | Quantum efficiency bound for continuous heat engines coupled to noncanonical reservoirs
[22] | Wang R, Lu J, Wang C, and Jiang J H 2018 Sci. Rep. 8 2607 | Nonlinear effects for three-terminal heat engine and refrigerator
[23] | Jiang J H and Imry Y 2017 Phys. Rev. Appl. 7 064001 | Enhancing Thermoelectric Performance Using Nonlinear Transport Effects
[24] | Jiang J H and Imry Y 2018 Phys. Rev. B 97 125422 | Near-field three-terminal thermoelectric heat engine
[25] | Erdman P A, Bhandari B, Fazio R, Pekola J P, and Taddei F 2018 Phys. Rev. B 98 045433 | Absorption refrigerators based on Coulomb-coupled single-electron systems
[26] | Bhandari B, Chiriacò G, Erdman P A, Fazio R, and Taddei F 2018 Phys. Rev. B 98 035415 | Thermal drag in electronic conductors
[27] | Lu J, Wang R, Ren J, Kulkarni M, and Jiang J H 2019 Phys. Rev. B 99 035129 | Quantum-dot circuit-QED thermoelectric diodes and transistors
[28] | Prete D, Erdman P A, Demontis V, Zannier V, Ercolani D, Sorba L, Beltram F, Rossella F, Taddei F, and Roddaro S 2019 Nano Lett. 19 3033 | Thermoelectric Conversion at 30 K in InAs/InP Nanowire Quantum Dots
[29] | Jaliel G, Puddy R K, Sánchez R, Jordan A N, Sothmann B, Farrer I, Griffiths J P, Ritchie D A, and Smith C G 2019 Phys. Rev. Lett. 123 117701 | Experimental Realization of a Quantum Dot Energy Harvester
[30] | Sothmann B, Sánchez R, Jordan A N, and Büttiker M 2012 Phys. Rev. B 85 205301 | Rectification of thermal fluctuations in a chaotic cavity heat engine
[31] | Jiang J H 2014 J. Appl. Phys. 116 194303 | Enhancing efficiency and power of quantum-dots resonant tunneling thermoelectrics in three-terminal geometry by cooperative effects
[32] | Mari A and Eisert J 2012 Phys. Rev. Lett. 108 120602 | Cooling by Heating: Very Hot Thermal Light Can Significantly Cool Quantum Systems
[33] | Cleuren B, Rutten B, and van den Broeck C 2012 Phys. Rev. Lett. 108 120603 | Cooling by Heating: Refrigeration Powered by Photons
[34] | Lu J, Wang R, Wang C, and Jiang J H 2020 Phys. Rev. B 102 125405 | Brownian thermal transistors and refrigerators in mesoscopic systems
[35] | Li B, Wang L, and Casati G 2004 Phys. Rev. Lett. 93 184301 | Thermal Diode: Rectification of Heat Flux
[36] | Li B, Wang L, and Casati G 2006 Appl. Phys. Lett. 88 143501 | Negative differential thermal resistance and thermal transistor
[37] | Jiang J H, Kulkarni M, Segal D, and Imry Y 2015 Phys. Rev. B 92 045309 | Phonon thermoelectric transistors and rectifiers
[38] | Joulain K, Drevillon J, Ezzahri Y, and Ordonez-Miranda J 2016 Phys. Rev. Lett. 116 200601 | Quantum Thermal Transistor
[39] | Sánchez R, Thierschmann H, and Molenkamp L W 2017 Phys. Rev. B 95 241401 | All-thermal transistor based on stochastic switching
[40] | Entin-Wohlman O, Imry Y, and Aharony A 2010 Phys. Rev. B 82 115314 | Three-terminal thermoelectric transport through a molecular junction
[41] | Ren J, Zhu J X, Gubernatis J E, Wang C, and Li B 2012 Phys. Rev. B 85 155443 | Thermoelectric transport with electron-phonon coupling and electron-electron interaction in molecular junctions
[42] | Jiang J H, Entin-Wohlman O, and Imry Y 2013 Phys. Rev. B 87 205420 | Hopping thermoelectric transport in finite systems: Boundary effects
[43] | Agarwalla B K, Jiang J H, and Segal D 2015 Phys. Rev. B 92 245418 | Full counting statistics of vibrationally assisted electronic conduction: Transport and fluctuations of thermoelectric efficiency
[44] | Narozhny B N and Levchenko A 2016 Rev. Mod. Phys. 88 025003 | Coulomb drag
[45] | Sánchez R, López R, Sánchez D, and Büttiker M 2010 Phys. Rev. Lett. 104 076801 | Mesoscopic Coulomb Drag, Broken Detailed Balance, and Fluctuation Relations
[46] | Hartmann F, Pfeffer P, Höfling S, Kamp M, and Worschech L 2015 Phys. Rev. Lett. 114 146805 | Voltage Fluctuation to Current Converter with Coulomb-Coupled Quantum Dots
[47] | Zhang Y, Lin G, and Chen J 2015 Phys. Rev. E 91 052118 | Three-terminal quantum-dot refrigerators
[48] | Thierschmann H, Sánchez R, Sothmann B, Buhmann H, and Molenkamp L W 2016 C. R. Phys. 17 1109 | Thermoelectrics with Coulomb-coupled quantum dots
[49] | Yang J, Elouard C, Splettstoesser J, Sothmann B, Sánchez R, and Jordan A N 2019 Phys. Rev. B 100 045418 | Thermal transistor and thermometer based on Coulomb-coupled conductors
[50] | Sánchez R, Samuelsson P, and Potts P P 2019 Phys. Rev. Res. 1 033066 | Autonomous conversion of information to work in quantum dots
[51] | He W X, Cao Z, Li G Y, Li L, Lü H F, Li Z, and Luo H G 2020 Phys. Rev. B 101 035417 | Performance of the -matrix based master equation for Coulomb drag in double quantum dots
[52] | Tabatabaei S M, Sanchez D, Yeyati A L, and Sanchez R 2020 Phys. Rev. Lett. 125 247701 | Andreev-Coulomb Drag in Coupled Quantum Dots
[53] | Sánchez R, Sothmann B, Jordan A N, and Bttiker M 2013 New J. Phys. 15 125001 | Correlations of heat and charge currents in quantum-dot thermoelectric engines
[54] | Whitney R S, Sánchez R, Haupt F, and Splettstoesser J 2016 Physica E 75 257 | Thermoelectricity without absorbing energy from the heat sources
[55] | Jiang J H 2014 Phys. Rev. E 90 042126 | Thermodynamic bounds and general properties of optimal efficiency and power in linear responses
[56] | Jiang J H, Agarwalla B K, and Segal D 2015 Phys. Rev. Lett. 115 040601 | Efficiency Statistics and Bounds for Systems with Broken Time-Reversal Symmetry
[57] | Proesmans K, Cleuren B, and van den Broeck C 2016 Phys. Rev. Lett. 116 220601 | Power-Efficiency-Dissipation Relations in Linear Thermodynamics
[58] | Lu J, Jiang J H, and Imry Y 2021 Phys. Rev. B 103 085429 | Unconventional four-terminal thermoelectric transport due to inelastic transport: Cooling by transverse heat current, transverse thermoelectric effect, and Maxwell demon
[59] | Kedem O and Caplan S R 1965 Trans. Faraday Soc. 61 1897 | Degree of coupling and its relation to efficiency of energy conversion
[60] | Entin-Wohlman O, Jiang J H, and Imry Y 2014 Phys. Rev. E 89 012123 | Efficiency and dissipation in a two-terminal thermoelectric junction, emphasizing small dissipation
[61] | Lu J, Liu Y, Wang R, Wang C, and Jiang J H 2019 Phys. Rev. B 100 115438 | Optimal efficiency and power, and their trade-off in three-terminal quantum thermoelectric engines with two output electric currents
[62] | Maxwell J C 1871 Theory of Heat (London: Longman) |
[63] | Koski J V, Maisi V F, Sagawa T, and Pekola J P 2014 Phys. Rev. Lett. 113 030601 | Experimental Observation of the Role of Mutual Information in the Nonequilibrium Dynamics of a Maxwell Demon
[64] | Koski J V, Kutvonen A, Khaymovich I M, Ala-Nissila T, and Pekola J P 2015 Phys. Rev. Lett. 115 260602 | On-Chip Maxwell’s Demon as an Information-Powered Refrigerator
[65] | Koski J V, Maisi V F, Pekola J P, and Averin D V 2014 Proc. Natl. Acad. Sci. USA 111 13786 | Experimental realization of a Szilard engine with a single electron
[66] | Chida K, Desai S, Nishiguchi K, and Fujiwara A 2017 Nat. Commun. 8 15310 | Power generator driven by Maxwell’s demon
[67] | Sánchez R, Splettstoesser J, and Whitney R S 2019 Phys. Rev. Lett. 123 216801 | Nonequilibrium System as a Demon
[68] | Annby-Andersson B, Samuelsson P, Maisi V F, and Potts P P 2020 Phys. Rev. B 101 165404 | Maxwell's demon in a double quantum dot with continuous charge detection