[1] | Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, and Firsov A A 2005 Nature 438 197 | Two-dimensional gas of massless Dirac fermions in graphene
[2] | Zhang Y, Tan Y W, Stormer H L, and Kim P 2005 Nature 438 201 | Experimental observation of the quantum Hall effect and Berry's phase in graphene
[3] | Tombros N, Jozsa C, Popinciuc M, Jonkman H T, and van Wees B J 2007 Nature 448 571 | Electronic spin transport and spin precession in single graphene layers at room temperature
[4] | Gmitra M and Fabian J 2017 Phys. Rev. Lett. 119 146401 | Proximity Effects in Bilayer Graphene on Monolayer : Field-Effect Spin Valley Locking, Spin-Orbit Valve, and Spin Transistor
[5] | Wang Z, Tang C, Sachs R, Barlas Y, and Shi J 2015 Phys. Rev. Lett. 114 016603 | Proximity-Induced Ferromagnetism in Graphene Revealed by the Anomalous Hall Effect
[6] | Ding J, Qiao Z, Feng W, Yao Y, and Niu Q 2011 Phys. Rev. B 84 195444 | Engineering quantum anomalous/valley Hall states in graphene via metal-atom adsorption: An ab-initio study
[7] | Qiao Z, Yang S A, Feng W, Tse W K, Ding J, Yao Y, Wang J, and Niu Q 2010 Phys. Rev. B 82 161414 | Quantum anomalous Hall effect in graphene from Rashba and exchange effects
[8] | Qiao Z, Jiang H, Li X, Yao Y, and Niu Q 2012 Phys. Rev. B 85 115439 | Microscopic theory of quantum anomalous Hall effect in graphene
[9] | Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, and Affronte M 2011 Nano Lett. 11 2634 | Graphene Spintronic Devices with Molecular Nanomagnets
[10] | Jin Y J L, Lin L, and Zhu J J 2020 Chin. Phys. Lett. 37 087501 | An Origin of Dzyaloshinskii–Moriya Interaction at Graphene-Ferromagnet Interfaces Due to the Intralayer RKKY/BR Interaction
[11] | McCreary K M, Swartz A G, Han W, Fabian J, and Kawakami R K 2012 Phys. Rev. Lett. 109 186604 | Magnetic Moment Formation in Graphene Detected by Scattering of Pure Spin Currents
[12] | Chen J H, Jang C, Adam S, Fuhrer M S, Williams E D, and Ishigami M 2008 Nat. Phys. 4 377 | Charged-impurity scattering in graphene
[13] | Cai C Y and Chen J H 2018 Chin. Phys. B 27 67304 | Electronic transport properties of Co cluster-decorated graphene
[14] | Qin Y, Wang S, Wang R, Bu H, Wang X, Wang X, Song F, Wang B, and Wang G 2016 Appl. Phys. Lett. 108 203106 | Sizeable Kane–Mele-like spin orbit coupling in graphene decorated with iridium clusters
[15] | Wei P, Lee S, Lemaitre F, Pinel L, Cutaia D, Cha W, Katmis F, Zhu Y, Heiman D, Hone J, Moodera J S, and Chen C T 2016 Nat. Mater. 15 711 | Strong interfacial exchange field in the graphene/EuS heterostructure
[16] | Wu Y F, Song H D, Zhang L, Yang X, Ren Z, Liu D, Wu H C, Wu J, Li J G, Jia Z, Yan B, Wu X, Duan C G, Han G, Liao Z M, and Yu D 2017 Phys. Rev. B 95 195426 | Magnetic proximity effect in graphene coupled to a nanoplate
[17] | Tang C, Zhang Z, Lai S, Tan Q, and Gao W B 2020 Adv. Mater. 32 1908498 | Magnetic Proximity Effect in Graphene/CrBr 3 van der Waals Heterostructures
[18] | Wu Y, Cui Q, Zhu M, Liu X, Wang Y, Zhang J, Zheng X, Shen J, Cui P, Yang H, and Wang S 2021 ACS Appl. Mater. & Interfaces 13 10656 | Magnetic Exchange Field Modulation of Quantum Hall Ferromagnetism in 2D van der Waals CrCl 3 /Graphene Heterostructures
[19] | Gredig T, Colesniuc C N, Crooker S A, and Schuller I K 2012 Phys. Rev. B 86 014409 | Substrate-controlled ferromagnetism in iron phthalocyanine films due to one-dimensional iron chains
[20] | Avvisati G, Cardoso C, Varsano D, Ferretti A, Gargiani P, and Betti M G 2018 Nano Lett. 18 2268 | Ferromagnetic and Antiferromagnetic Coupling of Spin Molecular Interfaces with High Thermal Stability
[21] | Gamou H, Shimose K, Enoki R, Minamitani E, Shiotari A, Kotani Y, Toyoki K, Nakamura T, Sugimoto Y, Kohda M, Nitta J, and Miwa S 2020 Nano Lett. 20 75 | Detection of Spin Transfer from Metal to Molecule by Magnetoresistance Measurement
[22] | de la T B, Švec M, Hapala P, Redondo J, Krejčí O, Lo R, Manna D, Sarmah A, Nachtigallová D, Tuček J, Błoński P, Otyepka M, Zbořil R, Hobza P, and Jelínek P 2018 Nat. Commun. 9 2831 | Non-covalent control of spin-state in metal-organic complex by positioning on N-doped graphene
[23] | Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L, and Hone J 2010 Nat. Nanotechnol. 5 722 | Boron nitride substrates for high-quality graphene electronics
[24] | Zomer P J, Dash S P, Tombros N, and Wees B J V 2011 Appl. Phys. Lett. 99 232104 | A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride
[25] | Hwang E H, Adam S, and Sarma S D 2007 Phys. Rev. Lett. 98 186806 | Carrier Transport in Two-Dimensional Graphene Layers
[26] | Tan Y W, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang E H, Das S S, Stormer H L, and Kim P 2007 Phys. Rev. Lett. 99 246803 | Measurement of Scattering Rate and Minimum Conductivity in Graphene
[27] | Wehling T O, Yuan S, Lichtenstein A I, Geim A K, and Katsnelson M I 2010 Phys. Rev. Lett. 105 056802 | Resonant Scattering by Realistic Impurities in Graphene
[28] | Li C, Komatsu K, Bertrand S, Clavé G, Campidelli S, Filoramo A, Guéron S, and Bouchiat H 2016 Phys. Rev. B 93 045403 | Signature of gate-tunable magnetism in graphene grafted with Pt-porphyrins
[29] | Abanin D A, Morozov S V, Ponomarenko L A, Gorbachev R V, Mayorov A S, Katsnelson M I, Watanabe K, Taniguchi T, Novoselov K S, Levitov L S, and Geim A K 2011 Science 332 328 | Giant Nonlocality Near the Dirac Point in Graphene
[30] | Avsar A, Tan J Y, Taychatanapat T, Balakrishnan J, Koon G K W, Yeo Y, Lahiri J, Carvalho A, Rodin A S, O'Farrell E C T, Eda G, Castro N A H, and Özyilmaz B 2014 Nat. Commun. 5 4875 | Spin–orbit proximity effect in graphene
[31] | Wojtaszek M, Vera-Marun I J, Maassen T, and van Wees B J 2013 Phys. Rev. B 87 081402 | Enhancement of spin relaxation time in hydrogenated graphene spin-valve devices
[32] | Ribeiro M, Power S R, Roche S, Hueso L E, and Casanova F 2017 Nat. Commun. 8 2198 | Scale-invariant large nonlocality in polycrystalline graphene
[33] | Kharitonov M 2012 Phys. Rev. B 85 155439 | Phase diagram for the quantum Hall state in monolayer graphene
[34] | Kharitonov M 2012 Phys. Rev. B 86 075450 | Edge excitations of the canted antiferromagnetic phase of the quantum Hall state in graphene: A simplified analysis
[35] | Nomura K and MacDonald A H 2006 Phys. Rev. Lett. 96 256602 | Quantum Hall Ferromagnetism in Graphene
[36] | Young A F, Sanchez-Yamagishi J D, Hunt B, Choi S H, Watanabe K, Taniguchi T, Ashoori R C, and Jarillo-Herrero P 2014 Nature 505 528 | Tunable symmetry breaking and helical edge transport in a graphene quantum spin Hall state
[37] | Li Y, Amado M, Hyart T, Mazur G P, Risinggård V, Wagner T, McKenzie-Sell L, Kimbell G, Wunderlich J, Linder J, and Robinson J W A 2020 Phys. Rev. B 101 241405 | Transition between canted antiferromagnetic and spin-polarized ferromagnetic quantum Hall states in graphene on a ferrimagnetic insulator
[38] | McCann E 2006 Phys. Rev. B 74 161403 | Asymmetry gap in the electronic band structure of bilayer graphene
[39] | Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T, and Tarucha S 2015 Nat. Phys. 11 1032 | Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene
[40] | Sui M, Chen G, Ma L, Shan W Y, Tian D, Watanabe K, Taniguchi T, Jin X, Yao W, Xiao D, and Zhang Y 2015 Nat. Phys. 11 1027 | Gate-tunable topological valley transport in bilayer graphene
[41] | Hong X, Zou K, and Zhu J 2009 Phys. Rev. B 80 241415 | Quantum scattering time and its implications on scattering sources in graphene
[42] | Wang J I J, Yang Y, Chen Y A, Watanabe K, Taniguchi T, Churchill H O H, and Jarillo-Herrero P 2015 Nano Lett. 15 1898 | Electronic Transport of Encapsulated Graphene and WSe 2 Devices Fabricated by Pick-up of Prepatterned hBN
[43] | Dean C R, Young A F, Cadden-Zimansky P, Wang L, Ren H, Watanabe K, Taniguchi T, Kim P, Hone J, and Shepard K L 2011 Nat. Phys. 7 693 | Multicomponent fractional quantum Hall effect in graphene
[44] | Pan H, Wang Q, Wu X, Song T, Song Q, and Wang J 2020 Nanotechnology 31 355001 | Thermal annealing effect on the electrical quality of graphene/hexagonal boron nitride heterostructure devices