[1] | Nye J F and Berry M V 1971 Proc. R. Soc. A 336 165 | Dislocations in wave trains
[2] | Coullet P, Gil L, and Rocca F 1989 Opt. Commun. 73 403 | Optical vortices
[3] | Allen L, Beijersbergen M, Spreeuw R, and Woerdman J 1992 Phys. Rev. A 45 8185 | Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes
[4] | Allen L and Padgett M J 2000 Opt. Commun. 184 67 | The Poynting vector in Laguerre–Gaussian beams and the interpretation of their angular momentum density
[5] | Beijersbergen M W, Allen L, and Woerdman J P 1993 Opt. Commun. 96 123 | Astigmatic laser mode converters and transfer of orbital angular momentum
[6] | Turnbull G A, Robertson D A, Smith G M, Allen L, and Padgett M J 1996 Opt. Commun. 127 183 | The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate
[7] | Zhou G, Wang F, Chen R, and Li X 2020 Opt. Express 28 28518 | Transformation of a Hermite-Gaussian beam by an Airy transform optical system
[8] | Fan X, Ji X, Wang H, Deng Y, and Zhang H 2021 J. Opt. Soc. Am. A 38 168 | Self-focusing effect on the beam quality of Hermite–Gaussian beams propagating upwards through the inhomogeneous atmosphere
[9] | Zhou G, Wang F, and Feng S 2020 Opt. Express 28 19683 | Airy transform of Laguerre-Gaussian beams
[10] | Ge Z, Zhou Z, Li Y, Yang C, Liu S, and Shi B 2021 Opt. Lett. 46 158 | Fourth-harmonic generation of orbital angular momentum light with cascaded quasi-phase matching crystals
[11] | Seshadri S R 2002 Opt. Lett. 27 998 | Virtual source for the Bessel–Gauss beam
[12] | April A 2011 J. Opt. Soc. Am. A 28 2100 | Bessel–Gauss beams as rigorous solutions of the Helmholtz equation
[13] | Bagini V 1996 J. Mod. Opt. 43 1155 | Generalized Bessel-Gauss beams
[14] | Jordan R H and Hall D G 1994 Opt. Lett. 19 427 | Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution
[15] | Greene P L and Hall D G 1996 J. Opt. Soc. Am. A 13 962 | Diffraction characteristics of the azimuthal Bessel–Gauss beam
[16] | Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y, and Sasada H 1997 Phys. Rev. Lett. 78 4713 | Novel Optical Trap of Atoms with a Doughnut Beam
[17] | Yan M, Yin J, and Zhu Y 2000 J. Opt. Soc. Am. B 17 1817 | Dark-hollow-beam guiding and splitting of a low-velocity atomic beam
[18] | Mei Z and Zhao D 2005 J. Opt. Soc. Am. A 22 1898 | Controllable dark-hollow beams and their propagation characteristics
[19] | Terriza G M, Wright E M, and Torner L 2001 Opt. Lett. 26 163 | Propagation and control of noncanonical optical vortices
[20] | Alexander T J, Sukhorukov A A, and Kivshar Y S 2004 Phys. Rev. Lett. 93 63901 | Asymmetric Vortex Solitons in Nonlinear Periodic Lattices
[21] | Basistiy I V, Pasko V A, Slyusar V V, Soskin M S, and Vasnetsov M V 2004 J. Opt. A 6 S166 | Synthesis and analysis of optical vortices with fractional topological charges
[22] | Götte J B, Holleran K O, Preece D, Flossmann F, and Padgett M J 2008 Opt. Express 16 993 | Light beams with fractional orbital angular momentum and their vortex structure
[23] | Wen J, Wang L, Yang X, Zhang J, and Zhu S 2019 Opt. Express 27 5893 | Vortex strength and beam propagation factor of fractional vortex beams
[24] | Hosseini S M, Akhlaghi E A, and Saber A 2020 Opt. Lett. 45 3478 | Diffractometry-based vortex beams fractional topological charge measurement
[25] | Alonzo C A, Rodrigo P J, and Glückstad J 2005 Opt. Express 13 1749 | Helico-conical optical beams: a product of helical and conical phase fronts
[26] | Hermosa N, Guzmán C R, and Torres J P 2013 Opt. Lett. 38 383 | Helico-conical optical beams self-heal
[27] | Li P, Liu S, Peng T, Xie G, and Zhao J 2014 Opt. Express 22 7598 | Spiral autofocusing Airy beams carrying power-exponent-phase vortices
[28] | Lao G, Zhang Z, and Zhao D 2016 Opt. Express 24 18082 | Propagation of the power-exponent-phase vortex beam in paraxial ABCD system
[29] | Shen D, Wang K, and Zhao D 2019 Opt. Express 27 24642 | Generation and propagation of a new kind of power-exponent-phase vortex beam
[30] | Zhong J, Qi S, Liu S, Li P, and Zhao J 2019 Opt. Lett. 44 3849 | Accurate and rapid measurement of optical vortex links and knots
[31] | Zhang Y, Li P, Liu S, and Zhao J 2016 Opt. Express 24 28409 | Manipulating spin-dependent splitting of vector abruptly autofocusing beam by encoding cosine-azimuthal variant phases
[32] | Guo X, Li P, Zhong J, and Zhao J 2020 Laser & Photon. Rev. 14 1900366 | Tying Polarization‐Switchable Optical Vortex Knots and Links via Holographic All‐Dielectric Metasurfaces
[33] | Grier D G 2003 Nature 424 810 | A revolution in optical manipulation
[34] | Simpson N B, Dholakia K, Allen L, and Padgett M J 1997 Opt. Lett. 22 52 | Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner
[35] | Prentice P, Macdonald M, Frank T, Cuschieri A, and Dholakia K 2004 Opt. Express 12 593 | Manipulation and filtration of low index particles with holographic Laguerre-Gaussian optical trap arrays
[36] | Yao A and Padgett M J 2011 Adv. Opt. Photon. 3 161 | Orbital angular momentum: origins, behavior and applications
[37] | Simpson S H and Hanna S 2010 J. Opt. Soc. Am. A 27 1255 | Holographic optical trapping of microrods and nanowires
[38] | Ostrovsky A S, Rickenstorff P C, and Arrizón V 2013 Opt. Lett. 38 534 | Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator
[39] | Vaity P and Rusch L 2015 Opt. Lett. 40 597 | Perfect vortex beam: Fourier transformation of a Bessel beam
[40] | García J, Rickenstorff P C, Ramos G R, Arrizón V, and Ostrovsky A S 2014 Opt. Lett. 39 5305 | Simple technique for generating the perfect optical vortex
[41] | Chen M, Mazilu M, Arita Y, Wright E M, and Dholakia K 2013 Opt. Lett. 38 4919 | Dynamics of microparticles trapped in a perfect vortex beam
[42] | Pinnell J, Rodríguez F V, and Forbes A 2019 Opt. Lett. 44 5614 | How perfect are perfect vortex beams?
[43] | Li P, Zhang Y, Liu S, and Zhao J 2016 Opt. Lett. 41 2205 | Generation of perfect vectorial vortex beams
[44] | Collinst S A 1970 J. Opt. Soc. Am. 60 1168 | Lens-System Diffraction Integral Written in Terms of Matrix Optics*
[45] | Sun Q, Zhou K, Fang G, Zhang G, Liu Z, and Liu S 2012 Opt. Express 20 9682 | Hollow sinh-Gaussian beams and their paraxial properties
[46] | Karimi E, Zito G, Piccirillo B, Marrucci L, and Santamato E 2007 Opt. Lett. 32 3053 | Hypergeometric-Gaussian modes