[1] | Aoki Y, Endrodi G, Fodor Z, Katz S D, and Szabo K K 2006 Nature 443 675 | The order of the quantum chromodynamics transition predicted by the standard model of particle physics
[2] | Ding H T, Karsch F, and Mukherjee S 2015 Int. J. Mod. Phys. E 24 1530007 | Thermodynamics of strong-interaction matter from lattice QCD
[3] | Bazavov A, Karsch F, Mukherjee S, and Petreczky (USQCD) P 2019 Eur. Phys. J. A 55 194 | Hot-dense Lattice QCD
[4] | Ratti C 2018 Rep. Prog. Phys. 81 084301 | Lattice QCD and heavy ion collisions: a review of recent progress
[5] | Fukushima K and Hatsuda T 2011 Rep. Prog. Phys. 74 014001 | The phase diagram of dense QCD
[6] | Fukushima K and Sasaki C 2013 Prog. Part. Nucl. Phys. 72 99 | The phase diagram of nuclear and quark matter at high baryon density
[7] | Fischer C S 2019 Prog. Part. Nucl. Phys. 105 1 | QCD at finite temperature and chemical potential from Dyson–Schwinger equations
[8] | Stephanov M A 2004 Prog. Theor. Phys. Suppl. 153 139 | QCD Phase Diagram and the Critical Point
[9] | Stephanov M A 2006 PoS LAT 2006 024 | QCD phase diagram: an overview
[10] | Gyulassy M 2004 arXiv:nucl-th/0403032 | The QGP Discovered at RHIC
[11] | Gyulassy M and McLerran L 2005 Nucl. Phys. A 750 30 | New forms of QCD matter discovered at RHIC
[12] | Kolb P F and Heinz U W 2003 arXiv:nucl-th/0305084 | Hydrodynamic description of ultrarelativistic heavy-ion collisions
[13] | Muller B, Schukraft J, and Wyslouch B 2012 Annu. Rev. Nucl. Part. Sci. 62 361 | First Results from Pb+Pb Collisions at the LHC
[14] | Aggarwal M M et al. (STAR Collaboration) 2010 arXiv:1007.2613 [nucl-ex] | An Experimental Exploration of the QCD Phase Diagram: The Search for the Critical Point and the Onset of De-confinement
[15] | Luo X and Xu N 2017 Nucl. Sci. Tech. 28 112 | Search for the QCD critical point with fluctuations of conserved quantities in relativistic heavy-ion collisions at RHIC: an overview
[16] | Bzdak A, Esumi S, Koch V, Liao J, Stephanov M, and Xu N 2020 Phys. Rep. 853 1 | Mapping the phases of quantum chromodynamics with beam energy scan
[17] | Friman B, Hohne C, Knoll J, Leupold S, Randrup J, Rapp R, and Senger P 2011 CBM Physics Book: Compressed Baryonic Matter Laboratory Experiments vol 814 |
[18] | https://nica.jinr.ru/documents/Rep_NICA_2019_eng_OK.pdf |
[19] | Ruan S et al. 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 892 53 | Design of extraction system in BRing at HIAF
[20] | https://j-parc.jp/researcher/Hadron/en/pac_1607/pdf/LoI_2016-16.pdf |
[21] | Song H, Bass S A, Heinz U, Hirano T, and Shen C 2011 Phys. Rev. Lett. 106 192301 | 200 GeV Collisions Serve a Nearly Perfect Quark-Gluon Liquid
[22] | Song H 2013 Nucl. Phys. A 904–905 114c | QGP viscosity at RHIC and the LHC – a 2012 status report
[23] | Bernhard J E, Moreland J S, Bass S A, Liu J, and Heinz U 2016 Phys. Rev. C 94 024907 | Applying Bayesian parameter estimation to relativistic heavy-ion collisions: Simultaneous characterization of the initial state and quark-gluon plasma medium
[24] | Bernhard J E, Moreland J S, and Bass S A 2019 Nat. Phys. 15 1113 | Bayesian estimation of the specific shear and bulk viscosity of quark–gluon plasma
[25] | Nijs G, van der Schee W, and Gürsoy U and Snellings R 2021 Phys. Rev. C 103 054909 | Bayesian analysis of heavy ion collisions with the heavy ion computational framework Trajectum
[26] | Everett D et al. (JETSCAPE Collaboration) 2021 Phys. Rev. Lett. 126 242301 | Phenomenological Constraints on the Transport Properties of QCD Matter with Data-Driven Model Averaging
[27] | Everett D et al. (JETSCAPE Collaboration) 2021 Phys. Rev. C 103 054904 | Multisystem Bayesian constraints on the transport coefficients of QCD matter
[28] | Song H, Bass S A, and Heinz U 2011 Phys. Rev. C 83 024912 | Viscous QCD matter in a hybrid hydrodynamic+Boltzmann approach
[29] | Hirano T, Huovinen P, Murase K, and Nara Y 2013 Prog. Part. Nucl. Phys. 70 108 | Integrated dynamical approach to relativistic heavy ion collisions
[30] | Shen C, Qiu Z, Song H, Bernhard J, Bass S, and Heinz U 2016 Comput. Phys. Commun. 199 61 | The iEBE-VISHNU code package for relativistic heavy-ion collisions
[31] | Niemi H, Eskola K J, and Paatelainen R 2016 Phys. Rev. C 93 024907 | Event-by-event fluctuations in a perturbative QCD + saturation + hydrodynamics model: Determining QCD matter shear viscosity in ultrarelativistic heavy-ion collisions
[32] | Ryu S, Paquet J F, Shen C, Denicol G, Schenke B, Jeon S, and Gale C 2018 Phys. Rev. C 97 034910 | Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider
[33] | Pang L G, Petersen H, and Wang X N 2018 Phys. Rev. C 97 064918 | Pseudorapidity distribution and decorrelation of anisotropic flow within the open-computing-language implementation CLVisc hydrodynamics
[34] | Shen C and Schenke B 2018 Phys. Rev. C 97 024907 | Dynamical initial-state model for relativistic heavy-ion collisions
[35] | Andronic A, Braun-Munzinger P, Redlich K, and Stachel J 2018 Nature 561 321 | Decoding the phase structure of QCD via particle production at high energy
[36] | Adamczyk L et al. (STAR) 2017 Phys. Rev. C 96 044904 | Bulk properties of the medium produced in relativistic heavy-ion collisions from the beam energy scan program
[37] | Heinz U and Snellings R 2013 Annu. Rev. Nucl. Part. Sci. 63 123 | Collective Flow and Viscosity in Relativistic Heavy-Ion Collisions
[38] | Gale C, Jeon S, and Schenke B 2013 Int. J. Mod. Phys. A 28 1340011 | HYDRODYNAMIC MODELING OF HEAVY-ION COLLISIONS
[39] | Jeon S and Heinz U 2015 Int. J. Mod. Phys. E 24 1530010 | Introduction to hydrodynamics
[40] | Song H, Zhou Y, and Gajdosova K 2017 Nucl. Sci. Tech. 28 99 | Collective flow and hydrodynamics in large and small systems at the LHC
[41] | Karpenko I A, Huovinen P, Petersen H, and Bleicher M 2015 Phys. Rev. C 91 064901 | Estimation of the shear viscosity at finite net-baryon density from collision data at GeV
[42] | Shen C and Schenke B 2018 PoS CPOD 2017 006 |
[43] | Noronha J 2019 Nucl. Phys. A 982 78 | Collective effects in nuclear collisions: theory overview
[44] | Shen C and Alzhrani S 2020 Phys. Rev. C 102 014909 | Collision-geometry-based 3D initial condition for relativistic heavy-ion collisions
[45] | Okai M, Kawaguchi K, Tachibana Y, and Hirano T 2017 Phys. Rev. C 95 054914 | New approach to initializing hydrodynamic fields and mini-jet propagation in quark-gluon fluids
[46] | Shen C, Denicol G, Gale C, Jeon S, Monnai A, and Schenke B 2017 Nucl. Phys. A 967 796 | A hybrid approach to relativistic heavy-ion collisions at the RHIC BES energies
[47] | Du L, Heinz U, and Vujanovic G 2019 Nucl. Phys. A 982 407 | Hybrid model with dynamical sources for heavy-ion collisions at BES energies
[48] | Akamatsu Y, Asakawa M, Hirano T, Kitazawa M, Morita K, Murase K, Nara Y, Nonaka C, and Ohnishi A 2018 Phys. Rev. C 98 024909 | Dynamically integrated transport approach for heavy-ion collisions at high baryon density
[49] | Kanakubo Y, Tachibana Y, and Hirano T 2020 Phys. Rev. C 101 024912 | Unified description of hadron yield ratios from dynamical core-corona initialization
[50] | Hirano T, Heinz U W, Kharzeev D, Lacey R, and Nara Y 2006 Phys. Lett. B 636 299 | Hadronic dissipative effects on elliptic flow in ultrarelativistic heavy-ion collisions
[51] | Bozek P, Broniowski W, and Moreira J 2011 Phys. Rev. C 83 034911 | Torqued fireballs in relativistic heavy-ion collisions
[52] | Bozek P and Broniowski W 2016 Phys. Lett. B 752 206 | The torque effect and fluctuations of entropy deposition in rapidity in ultra-relativistic nuclear collisions
[53] | Bozek P and Broniowski W 2018 Phys. Rev. C 97 034913 | Longitudinal decorrelation measures of flow magnitude and event-plane angles in ultrarelativistic nuclear collisions
[54] | Sakai A, Murase K, and Hirano T 2020 Phys. Rev. C 102 064903 | Rapidity decorrelation of anisotropic flow caused by hydrodynamic fluctuations
[55] | Bialas A, Bzdak A, and Koch V 2018 Acta Phys. Pol. B 49 103 | Stopped Nucleons in Configuration Space
[56] | Pang L, Wang Q, and Wang X N 2012 Phys. Rev. C 86 024911 | Effects of initial flow velocity fluctuation in event-by-event (3+1)D hydrodynamics
[57] | Xu H J, Li Z, and Song H 2016 Phys. Rev. C 93 064905 | High-order flow harmonics of identified hadrons in TeV Pb + Pb collisions
[58] | Fu B, Xu K, Huang X G, and Song H 2021 Phys. Rev. C 103 024903 | Hydrodynamic study of hyperon spin polarization in relativistic heavy ion collisions
[59] | Li M and Kapusta J I 2019 Phys. Rev. C 99 014906 | Large baryon densities achievable in high-energy heavy-ion collisions outside the central rapidity region
[60] | McLerran L D, Schlichting S, and Sen S 2019 Phys. Rev. D 99 074009 | Spacetime picture of baryon stopping in the color-glass condensate
[61] | Attems M, Bea Y, Casalderrey-Solana J, Mateos D, Triana M, and Zilhão M 2018 Phys. Rev. Lett. 121 261601 | Holographic Collisions across a Phase Transition
[62] | Bazavov A et al. (HotQCD) 2019 Phys. Lett. B 795 15 | Chiral crossover in QCD at zero and non-zero chemical potentials
[63] | Monnai A, Schenke B, and Shen C 2019 Phys. Rev. C 100 024907 | Equation of state at finite densities for QCD matter in nuclear collisions
[64] | Noronha-Hostler J, Parotto P, Ratti C, and Stafford J M 2019 Phys. Rev. C 100 064910 | Lattice-based equation of state at finite baryon number, electric charge, and strangeness chemical potentials
[65] | Parotto P, Bluhm M, Mroczek D, Nahrgang M, Noronha-Hostler J, Rajagopal K, Ratti C, Schäfer T, and Stephanov M 2020 Phys. Rev. C 101 034901 | QCD equation of state matched to lattice data and exhibiting a critical point singularity
[66] | Monnai A, Schenke, and Shen C 2021 arXiv:2101.11591 [nucl-th] | QCD Equation of State at Finite Chemical Potentials for Relativistic Nuclear Collisions
[67] | Denicol G, Monnai A, and Schenke B 2016 Phys. Rev. Lett. 116 212301 | Moving Forward to Constrain the Shear Viscosity of QCD Matter
[68] | Denicol G S, Gale C, Jeon S, Monnai A, Schenke B, and Shen C 2018 Phys. Rev. C 98 034916 | Net-baryon diffusion in fluid-dynamic simulations of relativistic heavy-ion collisions
[69] | Li M and Shen C 2018 Phys. Rev. C 98 064908 | Longitudinal dynamics of high baryon density matter in high-energy heavy-ion collisions
[70] | Du L and Heinz U 2020 Comput. Phys. Commun. 251 107090 | (3+1)-dimensional dissipative relativistic fluid dynamics at non-zero net baryon density
[71] | Wu X Y, Pang L G, Qin G Y, and Wang X N 2021 Nucl. Phys. A 1005 121827 | Effects of dissipative baryon current in heavy-ion collisions at RHIC-BES energies
[72] | Fotakis J A, Greif M, Greiner C, Denicol G S, and Niemi H 2020 Phys. Rev. D 101 076007 | Diffusion processes involving multiple conserved charges: A study from kinetic theory and implications to the fluid-dynamical modeling of heavy ion collisions
[73] | Greif M, Fotakis J A, Denicol G S, and Greiner C 2018 Phys. Rev. Lett. 120 242301 | Diffusion of Conserved Charges in Relativistic Heavy Ion Collisions
[74] | Rose J B, Greif M, Hammelmann J, Fotakis J A, Denicol G S, Elfner H, and Greiner C 2020 Phys. Rev. D 101 114028 | Cross-conductivity: Novel transport coefficients to constrain the hadronic degrees of freedom of nuclear matter
[75] | Cooper F and Frye G 1974 Phys. Rev. D 10 186 | Single-particle distribution in the hydrodynamic and statistical thermodynamic models of multiparticle production
[76] | Bass S A et al. 1998 Prog. Part. Nucl. Phys. 41 255 | Microscopic models for ultrarelativistic heavy ion collisions
[77] | Bleicher M et al. 1999 J. Phys. G 25 1859 | Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model
[78] | Nara Y, Otuka N, Ohnishi A, Niita K, and Chiba S 1999 Phys. Rev. C 61 024901 | Relativistic nuclear collisions at GeV energies from to Au+Au with the hadronic cascade model
[79] | Weil J et al. 2016 Phys. Rev. C 94 054905 | Particle production and equilibrium properties within a new hadron transport approach for heavy-ion collisions
[80] | Shen C, Bass S A, Hirano T, Huovinen P, Qiu Z, Song H, and Heinz U 2011 J. Phys. G 38 124045 | The QGP shear viscosity–elusive goal or just around the corner?
[81] | Pisarski R D and Wilczek F 1984 Phys. Rev. D 29 338 | Remarks on the chiral phase transition in chromodynamics
[82] | Wilczek F 1992 Int. J. Mod. Phys. A 7 3911 [Erratum: 1992 Int. J. Mod. Phys. A 7 6951] | APPLICATION OF THE RENORMALIZATION GROUP TO A SECOND-ORDER QCD PHASE TRANSITION
[83] | Rajagopal K and Wilczek F 1993 Nucl. Phys. B 399 395 | Static and dynamic critical phenomena at a second order QCD phase transition
[84] | Palhares L F, Fraga E S, and Kodama T 2011 J. Phys. G 38 085101 | Chiral transition in a finite system and possible use of finite-size scaling in relativistic heavy ion collisions
[85] | Fraga E S, Palhares L F, and Sorensen P 2011 Phys. Rev. C 84 011903 | Finite-size scaling as a tool in the search for the QCD critical point in heavy ion data
[86] | Ding H T 2021 Nucl. Phys. A 1005 121940 | New developments in lattice QCD on equilibrium physics and phase diagram
[87] | Berges J and Rajagopal K 1999 Nucl. Phys. B 538 215 | Color superconductivity and chiral symmetry restoration at non-zero baryon density and temperature
[88] | Halasz A M, Jackson A D, Shrock R E, Stephanov M A, and Verbaarschot J J M 1998 Phys. Rev. D 58 096007 | Phase diagram of QCD
[89] | Karsch F, Laermann E, and Schmidt C 2001 Phys. Lett. B 520 41 | The chiral critical point in 3-flavour QCD
[90] | Nonaka C and Asakawa M 2005 Phys. Rev. C 71 044904 | Hydrodynamical evolution near the QCD critical end point
[91] | Bluhm M and Kampfer B 2006 PoS CPOD2006 004 | Quasi-particle perspective on critical end-point
[92] | Pradeep M S and Stephanov M 2019 Phys. Rev. D 100 056003 | Universality of the critical point mapping between Ising model and QCD at small quark mass
[93] | Mroczek D, Noronha-Hostler J, Acuna A R N, Ratti C, Parotto P, and Stephanov M A 2020 arXiv:2008.04022 [nucl-th] | Quartic cumulant of baryon number in the presence of QCD critical point
[94] | Stafford J M, Mroczek D, Acuna A R N, Noronha-Hostler J, Parotto P, Price D R P, and Ratti C 2021 arXiv:2103.08146 [hep-ph] | Strangeness neutral equation of state for QCD with a critical point
[95] | Stephanov M A, Rajagopal K, and Shuryak E V 1998 Phys. Rev. Lett. 81 4816 | Signatures of the Tricritical Point in QCD
[96] | Stephanov M A, Rajagopal K, and Shuryak E V 1999 Phys. Rev. D 60 114028 | Event-by-event fluctuations in heavy ion collisions and the QCD critical point
[97] | Hatta Y and Stephanov M A 2003 Phys. Rev. Lett. 91 102003 [Erratum: 2003 Phys. Rev. Lett. 91 129901] | Proton-Number Fluctuation as a Signal of the QCD Critical End Point
[98] | Kitazawa M and Asakawa M 2012 Phys. Rev. C 86 024904 [Erratum: 2012 Phys. Rev. C 86 069902] | Relation between baryon number fluctuations and experimentally observed proton number fluctuations in relativistic heavy ion collisions
[99] | Kitazawa M and Asakawa M 2012 Phys. Rev. C 85 021901 | Revealing baryon number fluctuations from proton number fluctuations in relativistic heavy ion collisions
[100] | Berdnikov B and Rajagopal K 2000 Phys. Rev. D 61 105017 | Slowing out of equilibrium near the QCD critical point
[101] | Stephanov M A 2009 Phys. Rev. Lett. 102 032301 | Non-Gaussian Fluctuations near the QCD Critical Point
[102] | Stephanov M A 2011 Phys. Rev. Lett. 107 052301 | Sign of Kurtosis near the QCD Critical Point
[103] | Athanasiou C, Rajagopal K, and Stephanov M 2010 Phys. Rev. D 82 074008 | Using higher moments of fluctuations and their ratios in the search for the QCD critical point
[104] | Asakawa M, Ejiri S, and Kitazawa M 2009 Phys. Rev. Lett. 103 262301 | Third Moments of Conserved Charges as Probes of QCD Phase Structure
[105] | Jiang L, Li P, and Song H 2016 Phys. Rev. C 94 024918 | Correlated fluctuations near the QCD critical point
[106] | Hohenberg P C and Halperin B I 1977 Rev. Mod. Phys. 49 435 | Theory of dynamic critical phenomena
[107] | Son D T and Stephanov M A 2004 Phys. Rev. D 70 056001 | Dynamic universality class of the QCD critical point
[108] | Mukherjee S, Venugopalan R, and Yin Y 2015 Phys. Rev. C 92 034912 | Real-time evolution of non-Gaussian cumulants in the QCD critical regime
[109] | Mukherjee S, Venugopalan R, and Yin Y 2016 Phys. Rev. Lett. 117 222301 | Universal Off-Equilibrium Scaling of Critical Cumulants in the QCD Phase Diagram
[110] | Jiang L, Wu S, and Song H 2017 Nucl. Phys. A 967 441 | Dynamical fluctuations in critical regime and across the 1st order phase transition
[111] | Wu S, Wu Z, and Song H 2019 Phys. Rev. C 99 064902 | Universal scaling of the field and net-protons from Langevin dynamics of model A
[112] | Nahrgang M, Bluhm M, Schaefer T, and Bass S A 2019 Phys. Rev. D 99 116015 | Diffusive dynamics of critical fluctuations near the QCD critical point
[113] | Sakaida M, Asakawa M, Fujii H, and Kitazawa M 2017 Phys. Rev. C 95 064905 | Dynamical evolution of critical fluctuations and its observation in heavy ion collisions
[114] | Wu S and Song H 2019 Chin. Phys. C 43 084103 | Universal scaling of conserved charge in stochastic diffusion dynamics
[115] | Kitazawa M, Pihan G, Touroux N, Bluhm M, and Nahrgang M 2021 Nucl. Phys. A 1005 121797 | Critical fluctuations in a dynamically expanding heavy-ion collision
[116] | Nahrgang M, Leupold S, Herold C, and Bleicher M 2011 Phys. Rev. C 84 024912 | Nonequilibrium chiral fluid dynamics including dissipation and noise
[117] | Nahrgang M, Leupold S, and Bleicher M 2012 Phys. Lett. B 711 109 | Equilibration and relaxation times at the chiral phase transition including reheating
[118] | Nahrgang M, Herold C, Leupold S, Mishustin I, and Bleicher M 2013 J. Phys. G 40 055108 | The impact of dissipation and noise on fluctuations in chiral fluid dynamics
[119] | Herold C, Nahrgang M, Yan Y, and Kobdaj C 2014 J. Phys. G 41 115106 | Net-baryon number variance and kurtosis within nonequilibrium chiral fluid dynamics
[120] | Herold C, Nahrgang M, Yan Y, and Kobdaj C 2016 Phys. Rev. C 93 021902 | Dynamical net-proton fluctuations near a QCD critical point
[121] | Herold C, Kittiratpattana A, Kobdaj C, Limphirat A, Yan Y, Nahrgang M, Steinheimer J, and Bleicher M 2019 Phys. Lett. B 790 557 | Entropy production and reheating at the chiral phase transition
[122] | Paech K, Stoecker H, and Dumitru A 2003 Phys. Rev. C 68 044907 | Hydrodynamics near a chiral critical point
[123] | Sasaki C and Mishustin I 2012 Phys. Rev. C 85 025202 | Phase structure of a chiral model with dilatons in hot and dense matter
[124] | Gell-Mann M and Levy M 1960 Nuovo Cimento 16 705 | The axial vector current in beta decay
[125] | Scavenius O, Mocsy A, Mishustin I N, and Rischke D H 2001 Phys. Rev. C 64 045202 | Chiral phase transition within effective models with constituent quarks
[126] | Kapusta J I, Muller B, and Stephanov M 2012 Phys. Rev. C 85 054906 | Relativistic theory of hydrodynamic fluctuations with applications to heavy-ion collisions
[127] | Landau L D and Lifshitz E M 1980 Fluid Mechanics (Oxford: Butterworth-Heinemann) chaps 133–136 |
[128] | Lifshitz E M and Pitaevskii L P 1980 Statistical Physics Part 2 (Oxford: Butterworth-Heinemann) chaps 86–91 |
[129] | Kapusta J I and Torres-Rincon J M 2012 Phys. Rev. C 86 054911 | Thermal conductivity and chiral critical point in heavy ion collisions
[130] | Murase K. and Hirano T 2013 arXiv:1304.3243 [nucl-th] | Relativistic fluctuating hydrodynamics with memory functions and colored noises
[131] | Kovtun P, Moore G D, and Romatschke P 2014 J. High Energy Phys. 2014(07) 123 | Towards an effective action for relativistic dissipative hydrodynamics
[132] | Arnold P B 2000 Phys. Rev. E 61 6099 | Symmetric path integrals for stochastic equations with multiplicative noise
[133] | Kovtun P, Moore G D, and Romatschke P 2011 Phys. Rev. D 84 025006 | Stickiness of sound: An absolute lower limit on viscosity and the breakdown of second-order relativistic hydrodynamics
[134] | Chafin C and Schäfer T 2013 Phys. Rev. A 87 023629 | Hydrodynamic fluctuations and the minimum shear viscosity of the dilute Fermi gas at unitarity
[135] | Murase K and Hirano T 2016 Nucl. Phys. A 956 276 | Hydrodynamic fluctuations and dissipation in an integrated dynamical model
[136] | Hirano T, Kurita R, and Murase K 2019 Nucl. Phys. A 984 44 | Hydrodynamic fluctuations of entropy in one-dimensionally expanding system
[137] | Nahrgang M, Bluhm M, Schäfer T, and Bass S 2017 Acta Phys. Pol. B Proc. Suppl. 10 687 | Toward the Description of Fluid Dynamical Fluctuations in Heavy-ion Collisions
[138] | Bluhm M, Nahrgang M, Schäfer T, and Bass S A 2018 EPJ Web Conf. 171 16004 | Fluctuating fluid dynamics for the QGP in the LHC and BES era
[139] | Singh M, Shen C, McDonald S, Jeon S, and Gale C 2019 Nucl. Phys. A 982 319 | Hydrodynamic Fluctuations in Relativistic Heavy-Ion Collisions
[140] | Akamatsu Y, Mazeliauskas A, and Teaney D 2017 Phys. Rev. C 95 014909 | Kinetic regime of hydrodynamic fluctuations and long time tails for a Bjorken expansion
[141] | An X, Basar G, Stephanov M, and Yee H U 2019 Phys. Rev. C 100 024910 | Relativistic hydrodynamic fluctuations
[142] | Akamatsu Y, Mazeliauskas A, and Teaney D 2018 Phys. Rev. C 97 024902 | Bulk viscosity from hydrodynamic fluctuations with relativistic hydrokinetic theory
[143] | Akamatsu Y, Teaney D, Yan F, and Yin Y 2019 Phys. Rev. C 100 044901 | Transits of the QCD critical point
[144] | Martinez M and Schäfer T 2019 Phys. Rev. C 99 054902 | Stochastic hydrodynamics and long time tails of an expanding conformal charged fluid
[145] | Kovtun P 2012 J. Phys. A 45 473001 | Lectures on hydrodynamic fluctuations in relativistic theories
[146] | Martinez M and Schäfer T 2017 Phys. Rev. A 96 063607 | Hydrodynamic tails and a fluctuation bound on the bulk viscosity
[147] | Pratt S 2020 Phys. Rev. C 101 014914 | Calculating -point charge correlations in evolving systems
[148] | An X, Başar G, Stephanov M, and Yee H U 2020 arXiv:2009.10742 [hep-th] | Evolution of Non-Gaussian Hydrodynamic Fluctuations
[149] | Stephanov M and Yin Y 2018 Phys. Rev. D 98 036006 | Hydrodynamics with parametric slowing down and fluctuations near the critical point
[150] | Rajagopal K, Ridgway G, Weller R, and Yin Y 2020 Phys. Rev. D 102 094025 | Understanding the out-of-equilibrium dynamics near a critical point in the QCD phase diagram
[151] | Du L, Heinz U, Rajagopal K, and Yin Y 2020 Phys. Rev. C 102 054911 | Fluctuation dynamics near the QCD critical point
[152] | An X, Başar G, Stephanov M, and Yee H U 2020 Phys. Rev. C 102 034901 | Fluctuation dynamics in a relativistic fluid with a critical point
[153] | An X 2021 Nucl. Phys. A 1005 121957 | Relativistic Dynamics of Fluctuations and QCD Critical Point
[154] | Francuz A, Dziarmaga J, Gardas B, and Zurek W H 2016 Phys. Rev. B 93 075134 | Space and time renormalization in phase transition dynamics
[155] | Nikoghosyan G, Nigmatullin R, and Plenio M B 2016 Phys. Rev. Lett. 116 080601 | Universality in the Dynamics of Second-Order Phase Transitions
[156] | Gibbs J W Collected Works (New Haven: Yale University Press) vol 1 pp 105–115, 252 |
[157] | Becker R and Doring W 1935 Ann. Phys. (N.Y.) 416 719 | Kinetische Behandlung der Keimbildung in übersättigten Dämpfen
[158] | Lothe J and Pound G 1962 J. Chem. Phys. 36 2080 | Reconsiderations of Nucleation Theory
[159] | Cahn J W and Hilliard J E 1959 J. Chem. Phys. 31 688 | Free Energy of a Nonuniform System. III. Nucleation in a Two‐Component Incompressible Fluid
[160] | Langer J S 1967 Ann. Phys. 41 108 | Theory of the condensation point
[161] | Langer J S 1969 Ann. Phys. 54 258 | Statistical theory of the decay of metastable states
[162] | Zeng X C and Oxtoby D W 1991 J. Chem. Phys. 94 4472 | Gas–liquid nucleation in Lennard‐Jones fluids
[163] | Csernai L P and Kapusta J I 1992 Phys. Rev. D 46 1379 | Nucleation of relativistic first-order phase transitions
[164] | Csernai L P and Kapusta J I 1992 Phys. Rev. Lett. 69 737 | Dynamics of the QCD phase transition
[165] | Csernai L P, Kapusta J I, Kluge G, and Zabrodin E E 1993 Z. Phys. C 58 453 | Phase transition dynamics in ultra-relativistic heavy ion collisions
[166] | Zabrodin E E, Bravina L V, Csernai L P, Stoecker H, and Greiner W 1998 Phys. Lett. B 423 373 | Supercooling of rapidly expanding quark-gluon plasma
[167] | Mishustin I N 1999 Phys. Rev. Lett. 82 4779 | Nonequilibrium Phase Transition in Rapidly Expanding Matter
[168] | Alamoudi S, Barci D G, Boyanovsky D, de Carvalho C A A, Fraga E S, Joras S E, and Takakura F I 1999 Phys. Rev. D 60 125003 | Dynamical viscosity of nucleating bubbles
[169] | Shukla P, Mohanty A K, Gupta S K, and Gleiser M 2000 Phys. Rev. C 62 054904 | Inhomogeneous nucleation in a quark-hadron phase transition
[170] | Shukla P and Mohanty A K 2001 Phys. Rev. C 64 054910 | Nucleation versus spinodal decomposition in a first order quark hadron phase transition
[171] | Bessa A, Fraga E S, and Mintz B W 2009 Phys. Rev. D 79 034012 | Phase conversion in a weakly first-order quark-hadron transition
[172] | Randrup J 2010 Phys. Rev. C 82 034902 | Spinodal phase separation in relativistic nuclear collisions
[173] | Randrup J 2009 Phys. Rev. C 79 054911 | Phase transition dynamics for baryon-dense matter
[174] | Steinheimer J and Randrup J 2012 Phys. Rev. Lett. 109 212301 | Spinodal Amplification of Density Fluctuations in Fluid-Dynamical Simulations of Relativistic Nuclear Collisions
[175] | Steinheimer J, Randrup J, and Koch V 2014 Phys. Rev. C 89 034901 | Non-equilibrium phase transition in relativistic nuclear collisions: Importance of the equation of state
[176] | Steinheimer J and Randrup J 2013 Phys. Rev. C 87 054903 | Spinodal density enhancements in simulations of relativistic nuclear collisions
[177] | Skokov V V and Voskresensky D N 2009 Nucl. Phys. A 828 401 | Hydrodynamical description of first-order phase transitions: Analytical treatment and numerical modeling
[178] | Pratt S 2017 Phys. Rev. C 96 044903 | Consistent implementation of non-zero-range terms into hydrodynamics
[179] | Andronic A, Braun-Munzinger P, and Stachel J 2009 Phys. Lett. B 673 142 [Erratum: 2009 Phys. Lett. B 678 516 ] | Thermal hadron production in relativistic nuclear collisions: The hadron mass spectrum, the horn, and the QCD phase transition
[180] | Ryu S, Paquet J F, Shen C, Denicol G S, Schenke B, Jeon S, and Gale C 2015 Phys. Rev. Lett. 115 132301 | Importance of the Bulk Viscosity of QCD in Ultrarelativistic Heavy-Ion Collisions
[181] | Song H and Heinz U W 2010 Phys. Rev. C 81 024905 | Interplay of shear and bulk viscosity in generating flow in heavy-ion collisions
[182] | Gale C, Jeon S, Schenke B, Tribedy P, and Venugopalan R 2013 Phys. Rev. Lett. 110 012302 | Event-by-Event Anisotropic Flow in Heavy-ion Collisions from Combined Yang-Mills and Viscous Fluid Dynamics
[183] | Qiu Z and Heinz U 2012 Phys. Lett. B 717 261 | Hydrodynamic event-plane correlations in Pb+Pb collisions at s=2.76A TeV
[184] | Heinz U, Qiu Z, and Shen C 2013 Phys. Rev. C 87 034913 | Fluctuating flow angles and anisotropic flow measurements
[185] | Teaney D and Yan L 2014 Phys. Rev. C 90 024902 | Event-plane correlations and hydrodynamic simulations of heavy ion collisions
[186] | Zhu X, Zhou Y, Xu H, and Song H 2017 Phys. Rev. C 95 044902 | Correlations of flow harmonics in TeV Pb-Pb collisions
[187] | Pang L G, Petersen H, Qin G Y, Roy V, and Wang X N 2016 Eur. Phys. J. A 52 97 | Decorrelation of anisotropic flow along the longitudinal direction
[188] | Zhao W, Xu H J, and Song H 2017 Eur. Phys. J. C 77 645 | Collective flow in 2.76 and 5.02 A TeV Pb + Pb collisions
[189] | Zhao W, Zhou Y, Xu H, Deng W, and Song H 2018 Phys. Lett. B 780 495 | Hydrodynamic collectivity in proton–proton collisions at 13 TeV
[190] | Moravcova Z, Gulbrandsen K, and Zhou Y 2021 Phys. Rev. C 103 024913 | Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions
[191] | Giacalone G, Schenke B, and Shen C 2020 Phys. Rev. Lett. 125 192301 | Observable Signatures of Initial State Momentum Anisotropies in Nuclear Collisions
[192] | Adamczyk L et al. (STAR) 2016 Phys. Rev. Lett. 116 112302 | Beam Energy Dependence of the Third Harmonic of Azimuthal Correlations in Collisions at RHIC
[193] | Shen C 2021 Nucl. Phys. A 1005 121788 | Studying QGP with flow: A theory overview
[194] | Ahle L et al. (E-802 Collaboration) 1998 Phys. Rev. C 57 R466 | Particle production at high baryon density in central Au+Au reactions at 11.6 GeV/
[195] | Ahle L et al. (E802 Collaboration) 1999 Phys. Rev. C 60 064901 | Proton and deuteron production in Au+Au reactions at
[196] | Barrette J et al. (E877 Collaboration) 2000 Phys. Rev. C 62 024901 | Proton and pion production in Au+Au collisions at GeV/ c
[197] | Arsene I C et al. 2009 Phys. Lett. B 677 267 | Nuclear stopping and rapidity loss in Au+Au collisions at sNN=62.4 GeV
[198] | Anticic T et al. (NA49 Collaboration) 2011 Phys. Rev. C 83 014901 | Centrality dependence of proton and antiproton spectra in Pb Pb collisions at GeV and GeV measured at the CERN Super Proton Synchrotron
[199] | Pratt S and Plumberg C 2020 Phys. Rev. C 102 044909 | Determining the diffusivity for light quarks from experiment
[200] | Pratt S and Plumberg C 2021 arXiv:2104.00628 [nucl-th] | Charge Balance Functions for Heavy-Ion Collisions at LHC Energies
[201] | Adam J et al. (STAR Collaboration) 2021 Phys. Rev. Lett. 126 092301 | Nonmonotonic Energy Dependence of Net-Proton Number Fluctuations
[202] | Abdallah M et al. (STAR Collaboration) 2021 arXiv:2101.12413 [nucl-ex] | Cumulants and Correlation Functions of Net-proton, Proton and Antiproton Multiplicity Distributions in Au+Au Collisions at RHIC
[203] | Sun K J, Chen L W, Ko C M, and Xu Z 2017 Phys. Lett. B 774 103 | Probing QCD critical fluctuations from light nuclei production in relativistic heavy-ion collisions
[204] | Sun K J, Chen L W, Ko C M, Pu J, and Xu Z 2018 Phys. Lett. B 781 499 | Light nuclei production as a probe of the QCD phase diagram
[205] | Adamczyk L et al. (STAR Collaboration) 2016 Phys. Rev. C 94 034908 | Measurement of elliptic flow of light nuclei at , 62.4, 39, 27, 19.6, 11.5, and 7.7 GeV at the BNL Relativistic Heavy Ion Collider
[206] | Adam J et al. (STAR Collaboration) 2019 Phys. Rev. C 99 064905 | Beam energy dependence of (anti-)deuteron production in Au + Au collisions at the BNL Relativistic Heavy Ion Collider
[207] | Zhang D et al. (STAR Collaboration) 2020 JPS Conf. Proc. 32 010069 | Energy Dependence of Light Nuclei ( d , t ) Production at STAR
[208] | Liu H, Zhang D, He S, Sun K J, Yu N, and Luo X 2020 Phys. Lett. B 805 135452 | Light nuclei production in Au+Au collisions at = 5–200 GeV from JAM model
[209] | Sun K J and Ko C M 2020 arXiv:2005.00182 [nucl-th] | Light nuclei production in relativistic heavy ion collisions from the AMPT model
[210] | Deng X G and Ma Y G 2020 Phys. Lett. B 808 135668 | Light nuclei production in Au + Au collisions at = 7.7 - 80 GeV from UrQMD model
[211] | Zhao W, Shen C, Ko C M, Liu Q, and Song H 2020 Phys. Rev. C 102 044912 | Beam-energy dependence of the production of light nuclei in Au + Au collisions
[212] | Shuryak E and Torres-Rincon J M 2019 Phys. Rev. C 100 024903 | Baryon clustering at the critical line and near the hypothetical critical point in heavy-ion collisions
[213] | Shuryak E and Torres-Rincon J M 2020 Phys. Rev. C 101 034914 | Baryon preclustering at the freeze-out of heavy-ion collisions and light-nuclei production
[214] | Shuryak E and Torres-Rincon J M 2020 Eur. Phys. J. A 56 241 | Light-nuclei production and search for the QCD critical point
[215] | DeMartini D and Shuryak E 2020 arXiv:2007.04863 [nucl-th] | Nucleon clustering at kinetic freezeout of heavy-ion collisions via path-integral Monte Carlo
[216] | DeMartini D and Shuryak E 2020 arXiv:2010.02785 [nucl-th] | Many-body forces and nucleon clustering near the QCD critical point
[217] | Sun K J, Ko C M, Li F, Xu J, and Chen L W 2020 arXiv:2006.08929 [nucl-th] | Enhanced yield ratio of light nuclei in heavy ion collisions with a first-order QCD phase transition
[218] | Oliinychenko D, Shen C, and Koch V 2021 Phys. Rev. C 103 034913 | Deuteron production in AuAu collisions at GeV via pion catalysis
[219] | Moreland J S, Bernhard J E, and Bass S A 2020 Phys. Rev. C 101 024911 | Bayesian calibration of a hybrid nuclear collision model using and Pb-Pb data at energies available at the CERN Large Hadron Collider